984 resultados para Incisión fluvial
Resumo:
This article presents a mass balance calculation of the sediment sources and sinks of the Laptev Sea. Sediment input into three regional sectors calculated on the basis of fluvial sediment discharge and coastal erosion sediment supply is compared with sediment output as estimated from sedimentation rates of well-dated marine sediment cores and data on sediment export to the central Arctic Ocean by sea ice and through bottom currents. Within the uncertainties of the calculations, input and output are very well balanced. The calculation reveals that the sediment budget of the Laptev Sea is mainly controlled by fluvial and coastal sediment input. The major fraction of the material is simply deposited on the Laptev Sea shelf. However, for the western Laptev Sea, where sedimentation rates are low due to the absence of large rivers, export by sea ice is the main output factor.
Resumo:
The magnetic microparticle and nanoparticle inventories of marine sediments from equatorial Atlantic sites were investigated by scanning and transmission electron microscopy to classify all present detrital and authigenic magnetic mineral species and to investigate their regional distribution, origin, transport, and preservation. This information is used to establish source-to-sink relations and to constrain environmental magnetic proxy interpretations for this area. Magnetic extracts were prepared from sediments of three supralysoclinal open ocean gravity cores located at the Ceará Rise (GeoB 1523-1; 3°49.9'N/41°37.3'W), the Mid-Atlantic Ridge (GeoB 4313-2; 4°02.8'N/33°26.3'W), and the Sierra Leone Rise (GeoB 2910-1; 4°50.7'N/21°03.2'W). Sediments from two depths corresponding to marine isotope stages 4 and 5.5 were processed. This selection represents glacial and interglacial conditions of sedimentation for the western, central, and eastern equatorial Atlantic and avoids interferences from subsurface and anoxic processes. Crystallographic, elemental, morphological, and granulometric data of more than 2000 magnetic particles were collected by scanning and transmission electron microscopy. On basis of these properties, nine particle classes could be defined: detrital magnetite, titanomagnetite (fragmental and euhedral), titanomagnetite-hemoilmentite intergrowths, silicates with magnetic inclusions, microcrystalline hematite, magnetite spherules, bacterial magnetite, goethite needles, and nanoparticle clusters. Each class can be associated with fluvial, eolian, subaeric, and submarine volcanic, biogenic, or chemogenic sources. Large-scale sedimentation patterns are delineated as well: detrital magnetite is typical of Amazon discharge, fragmental titanomagnetite is a submarine weathering product of mid-ocean ridge basalts, and titanomagnetite-hemoilmenite intergrowths are common magnetic particles in West African dust. This clear regionalization underlines that magnetic petrology is an excellent indicator of source-to-sink relations. Hematite encrustations, magnetic spherules, and nanoparticle clusters were found at all investigated sites, while bacterial magnetite and authigenic hematite were only detected at the more oxic western site. At the eastern site, surface pits and crevices were seen on the crystal faces indicating subtle early diagenetic reductive dissolution. It was observed that paleoclimatic signatures of magnetogranulometric parameters such as the ratio of anhysteretic and isothermal remanent magnetizations can be formed either by mixing of multiple sources with separate, relatively narrow grain size ranges (western site) or by variable sorting of a single source with a broad grain size distribution (eastern site). Hematite, goethite, and possibly ferrihydrite nanoparticles occur in all sediment cores studied and have either high-coercive or superparamagnetic properties depending on their partly ultrafine grain sizes. These two magnetic fractions are generally discussed as separate fractions, but we suggest that they could actually be genetically linked.
Resumo:
Site 723 is located in a water depth of 808 m at the center of the oxygen minimum zone and the middle part of the main thermocline on the Oman Margin. Oxygen isotope curves of planktonic delta18OP and benthic delta18OB can be traced back continuously to Stage 23 with high resolution measurements. A tentative correlation to Stage 53 has been tried using oxygen isotope stratigraphy. The amplitudes of the fluctuations of the benthic delta18OB curve are small, compared with the planktonic delta18OP curve. The delays of benthic oxygen isotopes delta18OB related to the planktonic delta18OP appear in the transgressive stages. Carbon isotopes of benthic delta13CB and planktonic delta13CP generally show an inverse correlation with oxygen isotope values delta18OB and delta18OB and delta18OP, however, the changes of delta13C are more gradual than those of delta18O during transgressive stages in spite of the synchronized changes of delta13C with those of delta18O during regressive stages. The difference of oxygen isotope between benthic and planktonic foraminifers represents the degree of pushing up the thermocline by upwelling, and the difference of carbon isotope represents the relative amount of upwelling Sigma[CO2] to the biological uptake in the surface water. These isotopic differences can be used as indicators of upwelling and show strong upwelling in the interglacial and weak upwelling in the glacial stages. The organic carbon content is correlated with the isotopic upwelling indicators, and higher content is correlated with the isotopic upwelling indicators and higher content appears in the interglacial stages. The calculated rate of sedimentation based on oxygen isotope stratigraphy in glacial stages is significantly high, two to four times that of interglacial stages, and the absolute flux of fluvial sediments with variability of lithofacies increased in the glacial stage. The present glacial-interglacial cycle with the fluctuation of upwelling relating to the southwest monsoon can be traced back to Stage 8, 250 ka. From Stage 8 to 12, 250-450 ka, the upwelling indicator of oxygen isotope difference did not show such distinct cyclicity. For Stages 12-15, 450-600 ka, the upwelling can be estimated as strong as in interglacial stage of the present cycles, with slightly weak upwelling in the glacial stage. This upwelling and climate can be traced back to the late Pliocene. The strongest upwelling can be estimated in the Pliocene-Pleistocene time by the isotopic indicators and the high organic carbon content.
Resumo:
Southwestern Africa's coastal marine mudbelt, a prominent Holocene sediment package, provides a valuable archive for reconstructing terrestrial palaeoclimates on the adjacent continent. While the origin of terrestrial inorganic material has been intensively studied, the sources of terrigenous organic material deposited in the mudbelt are yet unclear. In this study, plant wax derived n-alkanes and their compound-specific d13C in soils, flood deposits and suspension loads from regional fluvial systems and marine sediments are analysed to characterize the origin of terrestrial organic material in the southwest African mudbelt. Soils from different biomes in the catchments of the Orange River and small west coast rivers show on average distinct n-alkane distributions and compound-specific d13C values reflecting biome-specific vegetation types, most notably the winter rainfall associated Fynbos Biome of the southwestern Cape. In the fluvial sediment samples from the Orange River, changes in the n-alkane distributions and compound-specific d13C compositions reveal an overprint by local vegetation along the river's course. The smaller west coast rivers show distinct signals, reflecting their small catchment areas and particular vegetation communities. Marine surface sediments spanning a transect from the northern mudbelt (29°S) to St. Helena Bay (33°S) reveal subtle, but spatially coherent, changes in n-alkane distributions and compound-specific d13C, indicating the influence of Orange River sediments in the northern mudbelt, the increasing importance of terrigenous input from the adjacent western coastal biomes in the central mudbelt, and contributions from the Fynbos Biome to the southern mudbelt. These findings indicate the different sources of terrestrial organic material deposited in the mudbelt, and highlight the potential the mudbelt has to preserve evidence of environmental change from the adjacent continent.
Resumo:
Organic matter contained in surface sediments from four regions on the western Portuguese shelf, which are influenced by coastal upwelling and fluvial input, was analysed with respect to elemental organic carbon (Corg) and nitrogen (Ntotal) content and isotopic carbon and nitrogen ratios (d13Corg, d15N). Corg/Ntotal weight ratios and d13Corg values are interpreted in terms of terrigenous or marine organic matter sources, supported by CaCO3 content. Organic matter in the shelf sediments is mainly of marine origin, with increasing terrigenous components only close to rivers and estuaries. In the northern shelf region the data indicates significant terrigenous supply by the Douro River. North of the Nazaré Canyon organic matter composition implies a mainly marine origin, with a higher terrestrial influence close to the canyon head. Organic matter composition in the central shelf region, which is dominated by the Tagus Estuary and the Tagus prodelta, reveals a change from a continental-type signature within the estuary to a more marine-type signature further to the west and south of the estuary mouth. In the southern region near Cape Sines the geochemical properties clearly reflect the marine origin of sedimentary organic matter. Sedimentary d15N values are interpreted to reflect various degrees of assimilation of seasonally upwelled nitrate, in relation to the upwelling centres. In the estuarine environment, inputs of agriculturally influenced dissolved inorganic nitrogen are reflected in the sediments. No evidence for N2-fixation or denitrification is found. On the central shelf north of the Nazaré canyon, sedimentary d15N values are close to marine d15NO3- and thus indicate a complete NO3- assimilation and N-limitation of marine production. Light d15N values in distal sediments off the Douro River mouth and in samples south of C. Sines reflect high NO3- supply and a close proximity to the seasonal upwelling centres. Particularly in sediments form the Sines region, light d15N values in southern samples reflect stronger upwelling further south.
Resumo:
The Northern Bay of Bengal (NBoB) is a globally important region for deep-sea organic matter (OM) deposition due to massive fluvial discharge from the Ganges-Brahmaputra-Meghna (G-B-M) rivers and moderate to high surface productivity. Previous studies have focused on carbon burial in turbiditic sediments of the Bengal Fan. However, little is known about the storage of carbon in pelagic and hemipelagic sediments of the Bay of Bengal over millennial time scales. This study presents a comprehensive history of OM origin and fate as well as a quantification of carbon sediment storage in the Eastern Bengal Slope (EBS) during the last 18 ka. Bulk organic proxies (TOC, TIC, TN, d13CTOC, d15NTN) and content and composition of total hydrolysable amino acids (THAA) in a sediment core (SO188-342KL) from the EBS were analyzed. Three periods of high OM accumulation were identified: the Late Glacial (LG), the Bölling/Alleröd (B/A), and the Early Holocene Climatic Optimum (EHCO). Lower eustatic sea level before 15 ka BP allowed a closer connection between the EBS and the fluvial debouch, favoring high terrestrial OM input to the core site. This connection was progressively lost between 15 and 7 ka BP as sea level rose to its present height and terrestrial OM input decreased considerably. Export and preservation of marine OM was stimulated during periods of summer monsoon intensification (B/A and EHCO) as a consequence of higher surface productivity enhanced by cyclonic-eddy nutrient pumping and fluvial nutrient delivery into the photic zone. Changes in the THAA composition indicate that the marine plankton community structure shifted from calcareous-dominated before 13 ka BP to siliceous-dominated afterwards. They also indicate that the relative proportion of marine versus terrestrial OM deposited at site 342KL was primarily driven by relative sea level and enlarged during the Holocene. The ballasting effect of lithogenic particles during periods of high coastal proximity and/or enhanced fluvial discharge promoted the export and preservation of OM. The high organic carbon accumulation rates in the EBS during the LG (18-17 ka BP) were 5-fold higher than at present and comparable to those of glacial upwelling areas. Despite the differences in sediment and OM transport and storage among the Western and Eastern sectors of the NBoB, this region remains important for global carbon sequestration during sea level low-stands. In addition, the summer monsoon was a key promotor of terrestrial and marine OM export to the deep-ocean, highlighting its relevance as regulator of the global carbon budget.
Resumo:
Permafrost landscapes experience different disturbances and store large amounts of organic matter, which may become a source of greenhouse gases upon permafrost degradation. We analysed the influence of terrain and geomorphic disturbances (e.g. soil creep, active-layer detachment, gullying, thaw slumping, accumulation of fluvial deposits) on soil organic carbon (SOC) and total nitrogen (TN) storage using 11 permafrost cores from Herschel Island, western Canadian Arctic. Our results indicate a strong correlation between SOC storage and the topographic wetness index. Undisturbed sites stored the majority of SOC and TN in the upper 70 cm of soil. Sites characterised by mass wasting showed significant SOC depletion and soil compaction, whereas sites characterised by the accumulation of peat and fluvial deposits store SOC and TN along the whole core. We upscaled SOC and TN to estimate total stocks using the ecological units determined from vegetation composition, slope angle and the geomorphic disturbance regime. The ecological units were delineated with a supervised classification based on RapidEye multispectral satellite imagery and slope angle. Mean SOC and TN storage for the uppermost 1?m of soil on Herschel Island are 34.8 kg C/m**2 and 3.4 kg N/m**2, respectively.
Resumo:
The Pyoza River area in the Arkhangelsk district exposes sedimentary sequences suitable for study of the interaction between consecutive Valdaian ice sheets in Northern Russia. Lithostratigraphic investigations combined with luminescence dating have revealed new evidence on the Late Pleistocene history of the area. Overlying glacigenic deposits of the Moscowian (Saalian) glaciation marine deposits previously confined to three separate transgression phases have all been connected to the Mikulinian (Eemian) interglacial. Early Valdaian (E. Weichselian) proglacial, lacustrine and fluvial deposits indicate glaciation to the east or north and consequently glacier damming and meltwater run-off in the Pyoza area around 90-110 ka BP. Interstadial conditions with forest-steppe tundra vegetation and lacustrine and fluvial deposition prevailed at the end of the Early Valdaian around 75-95 ka BP. A terrestrial-based glaciation from easterly uplands reached the Pyoza area at the Early to Middle Valdaian transition around 65-75 ka BP and deposited glaciofluvial strata and subglacial till (Yolkino Till). During deglaciation, laterally extensive glaciolacustrine sediments were deposited in ice-dammed lakes in the early Middle Valdaian around 55-75 ka BP. The Barents-Kara Sea ice sheet deposited the Viryuga Till on the lower Pyoza from northerly directions. The ice sheet formed the Pyoza marginal moraines, which can be correlated with the Markhida moraines further east, and proglacial lacustrine deposition persisted in the area during the first part of the Middle Valdaian. Glacio-isostatic uplift caused erosion followed by pedogenesis and the formation of a deflation horizon in the Middle Valdaian. Widely dispersed periglacial river plains were formed during the Late Valdaian around 10-20 ka BP. Thus, the evidence of a terrestrial-based ice sheet from easterly uplands in the Pyoza area suggests that local piedmont glaciers situated in highlands such as the Timan Ridge or the Urals could have developed into larger, regionally confined ice sheets. Two phases of ice damming and development of proglacial lakes occurred during the Early and Middle Valdaian. The region did not experience glaciation during the Late Valdaian.
Resumo:
The rock mass of fluvial and fluvioglacial deposits of the Late Holocene has been studied at the altitude of 1830 m a.s.l. using the palynologic, carpologic, geomorphologic, and geochronologic methods. It was ascertained that in the mid-Subatlantic period the area of the present-day beech elfin woodland was occupied by a belt of alpine meadows. Thus, the lower border of alpine meadows ran 370-400 m lower than the recent level, pointing to a rather significant cooling of the climate that occurred from ca 2nd cent. A.D.
Resumo:
Focussing on heavy-mineral associations in the Laptev-Sea continental margin area and the eastern Arctic Ocean, 129 surface sediment samples, two short and four long gravity cores have been studied. By means of the accessory components, heavy-mineral associations of surface sediment samples from the Laptev-See continental slope allowed the distinction into two different mineralogical provinces, each influenced by fluvial input of the Siberian river Systems. Transport pathways via sea ice from the shallow shelf areas into the Arctic Ocean up to the final ablation areas of the Fram Strait can be reconstructed by heavy-mineral data of surface sediments from the central Arctic Ocean. The shallow shelf of the Laptev Sea seems to be the most important source area for terrigenous material, as indicated by the abundant occurence of amphiboles and clinopyroxenes. Underneath the mixing Zone of the two dominating surface circulation Systems, the Beaufort- Gyre and Transpolar-Drift system, the imprint of the Amerasian shelf regions up to the Fram Strait is detectable because of a characteristical heavy-mineral association dominated by detrital carbonate and opaque minerals. Based On heavy-mineral characteristics of the potential circum-Arctic source areas, sea-ice drift, origin and distribution of ice-rafted material can be reconstructed during the past climatic cycles. Different factors controlling the transport of terrigenous material into the Arctic Ocean. The entrainment of particulate matter is triggered by the sea level, which flooded during highs and lows different regions resulting in the incorporation of sediment from different source areas into the sea ice. Additionally, the fluvial input even at low stands of sea level is responsible for the delivery of material of distinct sources for entrainment into the sea ice. Glacials and interglacials of climate cycles of the last 780 000 years left a characteristical signal in the central Arctic Ocean sediments caused by the ice- rafted material from different sources in the circum-Arctic regions and its change through time. Changes in the heavy-mineral association from an amphibole-dominated into a garnet-epidote-assemblage can be related to climate-related changes in source areas and directions of geostrophic winds, the dominating drive of the sea-ice drift. During Marine Isotope Stage (MIS) 6, the central Arctic Ocean is marked by an heavy-mineral signal, which occurs in recent sediments of the eastern Kara Sea. Its characteristics are high amounts of epidote, garnet and apatite. On the other hand, during the Same time interval a continuous record of Laptev Sea sediments is documented with high contents of amphiboles on the Lomonosov Ridge near the Laptev Sea continental slope. A nearly similar Pattern was detected in MIS 5 and 4. Small-scale glaciations in the Putorana-mountains and the Anabar-shield may have caused changes in the drainage area of the rivers and therefore a change in fluvial input. During MIS 3, the heavy-mineral association of central Arctic sediments show similar patterns than the Holocene mineral assemblage which consists of amphiboles, ortho- and clinopyroxenes with a Laptev Sea source. These minerals are indicating a stable Transpolar-Drift system similar to recent conditions. An extended influence of the Beaufort Gyre is only recognized, when sediment material from the Amerasian shelf areas reached the core location PS2757-718 during Termination Ib. Based On heavy-mineral data from Laptev-Sea continental slope Core PS2458-4 the paleo-sea-ice drift in the Laptev Sea during 14.000 years was reconstructed. During Holocene sea-level rise, the bathymetrically deeper parts of the Western shelf were flooded first. At the beginning of the Atlantic stage, nearly the entire shelf was marine influenced by fully marine conditions and the recent surface circulation was established.
Resumo:
Numerous studies use major element concentrations measured on continental margin sediments to reconstruct terrestrial climate variations. The choice and interpretation of climate proxies however differ from site to site. Here we map the concentrations of major elements (Ca, Fe, Al, Si, Ti, K) in Atlantic surface sediments (36°N-49°S) to assess the factors influencing the geochemistry of Atlantic hemipelagic sediments and the potential of elemental ratios to reconstruct different terrestrial climate regimes. High concentrations of terrigenous elements and low Ca concentrations along the African and South American margins reflect the dominance of terrigenous input in these regions. Single element concentrations and elemental ratios including Ca (e.g., Fe/Ca) are too sensitive to dilution effects (enhanced biological productivity, carbonate dissolution) to allow reliable reconstructions of terrestrial climate. Other elemental ratios reflect the composition of terrigenous material and mirror the climatic conditions within the continental catchment areas. The Atlantic distribution of Ti/Al supports its use as a proxy for eolian versus fluvial input in regions of dust deposition that are not affected by the input of mafic rock material. The spatial distributions of Al/Si and Fe/K reflect the relative input of intensively weathered material from humid regions versus slightly weathered particles from drier areas. High biogenic opal input however influences the Al/Si ratio. Fe/K is sensitive to the input of mafic material and the topography of Andean river drainage basins. Both ratios are suitable to reconstruct African and South American climatic zones characterized by different intensities of chemical weathering in well-understood environmental settings.
Resumo:
This thesis focuses on tectonic geomorphology and the response of the Ken River catchment to postulated tectonic forcing along a NE-striking monocline fold in the Panna region, Madhya Pradesh, India. Peninsular India is underlain by three northeast-trending paleotopographic ridges of Precambrian Indian basement, bounded by crustal-scale faults. Of particular interest is the Pokhara lineament, a crustal scale fault that defines the eastern edge of the Faizabad ridge, a paleotopographic high cored by the Archean Bundelkhand craton. The Pokhara lineament coincides with the monocline structure developed in the Proterozoic Vindhyan Supergroup rocks along the Bundelkhand cratonic margin. A peculiar, deeply incised meander-like feature, preserved along the Ken River where it flows through the monocline, may be intimately related to the tectonic regime of this system. This thesis examines 41 longitudinal stream profiles across the length of the monocline structure to identify any tectonic signals generated from recent surface uplift above the Pokhara lineament. It also investigates the evolution of the Ken River catchment in response to the generation of the monocline fold. Digital Elevation Models (DEM) from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used to delineate a series of tributary watersheds and extract individual stream profiles which were imported into MATLAB for analysis. Regression limits were chosen to define distinct channel segments, and knickpoints were defined at breaks between channel segments where there was a discrete change in the steepness of the channel profile. The longitudinal channel profiles exhibit the characteristics of a fluvial system in transient state. There is a significant downstream increase in normalized steepness index in the channel profiles, as well as a general increase in concavity downstream, with some channels exhibiting convex, over-steepened segments. Normalized steepness indices and uppermost knickpoint elevations are on average much higher in streams along the southwest segment of the monocline compared to streams along the northeast segment. Most channel profiles have two to three knickpoints, predominantly exhibiting slope-break morphology. These data have important implications for recent surface uplift above the Pokhara lineament. Furthermore, geomorphic features preserved along the Ken River suggest that it is an antecedent river. The incised meander-like feature appears to be the abandoned river valley of a former Ken River course that was captured during the evolution of the landscape by what is the present day Ken River.