984 resultados para Ice-binding proteins


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The heterodimeric HU protein, isolated from Escherichia coli, is associated with the bacterial nucleoid and shares some properties with both histones and HMG proteins. It is the prototype of small bacterial DNA binding proteins with a pleiotropic role in the cell. HU participates in several biological processes like cell division, initiation of DNA replication, transposition, and other biochemical functions. We show here that bacteria lacking HU are extremely sensitive to gamma irradiation. Expression of either one of the subunits of HU in the hupAB double mutant nearly restores the normal survival rate. This shows that the sensitivity is due to the absence of HU rather than being the result of a secondary mutation occurring in the hupAB cells or a modification of the SOS repair system, since SOS genes are induced normally in the absence of HU. Finally, in vitro studies give an indication of its potential role: HU protects DNA against cleavage by gamma-rays.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have molecularly cloned a calcium sensing receptor (CaSR) from a rat striatal cDNA library. Rat CaSR displays 92% overall homology to its bovine counterpart with seven putative transmembrane domains characteristic of the superfamily of guanine nucleotide-binding proteins and significant homology with the metabotropic glutamate receptors. Northern blot analysis reveals two transcripts in thyroid, kidney, lung, ileum, and pituitary. In brain highest regional expression of the RNA occurs in the hypothalamus and the corpus striatum. Immunohistochemistry reveals discrete punctate localizations throughout the brain that appear to be associated with nerve terminals. No staining is evident in cell bodies of neurons or glia. Cerebral arteries display an intense network of CaSR immunoreactive fibers associated with vessel innervation. CaSR on nerve terminal membranes may regulate neurotransmitter disposition in response to Ca2+ levels in the synaptic space.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tese de doutoramento, Farmácia (Biologia Celular e Molecular), Universidade de Lisboa, Faculdade de Farmácia, 2016

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The kinetochore forms the site of attachment for mitotic spindle microtubules driving chromosome segregation. The interdependent protein interactions in this large structure have made it difficult to dissect the function of its components. In this issue, Hori et al. (2013. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201210106) present a novel and powerful methodology to address the sufficiency of individual proteins for the creation of a functional de novo centromere.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The involvement of A to I RNA editing in antiviral responses was first indicated by the observation of genomic hyper-mutation for several RNA viruses in the course of persistent infections. However, in only a few cases an antiviral role was ever demonstrated and surprisingly, it turns out that ADARs - the RNA editing enzymes - may have a prominent pro-viral role through the modulation/down-regulation of the interferon response. A key role in this regulatory function of RNA editing is played by ADAR1, an interferon inducible RNA editing enzyme. A distinguishing feature of ADAR1, when compared with other ADARs, is the presence of a Z-DNA binding domain, Zalpha. Since the initial discovery of the specific and high affinity binding of Zalpha to CpG repeats in a left-handed helical conformation, other proteins, all related to the interferon response pathway, were shown to have similar domains throughout the vertebrate lineage. What is the biological function of this domain family remains unclear but a significant body of work provides pieces of a puzzle that points to an important role of Zalpha domains in the recognition of foreign nucleic acids in the cytoplasm by the innate immune system. Here we will provide an overview of our knowledge on ADAR1 function in interferon response with emphasis on Zalpha domains.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Kinetochores assemble on distinct 'centrochromatin' containing the histone H3 variant CENP-A and interspersed nucleosomes dimethylated on H3K4 (H3K4me2). Little is known about how the chromatin environment at active centromeres governs centromeric structure and function. Here, we report that centrochromatin resembles K4-K36 domains found in the body of some actively transcribed housekeeping genes. By tethering the lysine-specific demethylase 1 (LSD1), we specifically depleted H3K4me2, a modification thought to have a role in transcriptional memory, from the kinetochore of a synthetic human artificial chromosome (HAC). H3K4me2 depletion caused kinetochores to suffer a rapid loss of transcription of the underlying α-satellite DNA and to no longer efficiently recruit HJURP, the CENP-A chaperone. Kinetochores depleted of H3K4me2 remained functional in the short term, but were defective in incorporation of CENP-A, and were gradually inactivated. Our data provide a functional link between the centromeric chromatin, α-satellite transcription, maintenance of CENP-A levels and kinetochore stability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The centromere is a chromatin-based platform that accumulates microtubule-binding proteins that drive chromosome segregation during cell division. Despite their size (on the order of megabases of DNA in mammals) and conserved role, centromeres have the remarkable capacity to leave their usual comfort zone and to reform at a new chromosomal site (1). Although found rarely, these so-called neocentromeres are by most measures bona fide and segregate chromosomes with high fidelity. What accounts for this nomadic behavior?

Relevância:

80.00% 80.00%

Publicador:

Resumo:

CENP‐A containing nucleosomes epigenetically specify centromere position on chromosomes. Deposition of CENP‐A into chromatin is mediated by HJURP, a specific CENP‐A chaperone. Paradoxically, HJURP binding sterically prevents dimerization of CENP‐A, which is critical to form functional centromeric nucleosomes. A recent publication in The EMBO Journal (Zasadzińska et al, 2013) demonstrates that HJURP itself dimerizes through a C‐terminal repeat region, which is essential for centromeric assembly of nascent CENP‐A.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVES The characterization of differential gene expression in Giardia lamblia WB C6 strain C4 resistant to metronidazole and nitazoxanide using microarray technology and quantitative real-time PCR. METHODS In a previous study, we created and characterized the G. lamblia WB C6 clone C4 resistant to nitazoxanide and metronidazole. In this study, using a microarray-based approach, we have identified open-reading frames (ORFs) that were differentially expressed in C4 when compared with its wild-type WB C6. Using quantitative real-time PCR, we have validated the expression patterns of some of those ORFs, focusing on chaperones such as heat-shock proteins in wild-type and C4 trophozoites. In order to induce an antigenic shift, trophozoites of both strains were subjected to a cycle of en- and excystation. Expression of selected genes and resistance to nitazoxanide and metronidazole were investigated after this cycle. RESULTS Forty of a total of 9115 ORFs were found to be up-regulated and 46 to be down-regulated in C4 when compared with wild-type. After a cycle of en- and excystation, resistance of C4 to nitazoxanide and metronidazole was lost. Resistance formation and en-/excystation were correlated with changes in expression of ORFs encoding for major surface antigens such as the variant surface protein TSA417 or AS7 ('antigenic shift'). Moreover, expression patterns of the cytosolic heat-shock protein HSP70 B2, HSP40, and of the previously identified nitazoxanide-binding proteins nitroreductase and protein disulphide isomerase PDI4 were correlated with resistance and loss of resistance after en-/excystation. C4 trophozoites had a higher thermotolerance level than wild-type trophozoites. After en-/excystation, this tolerance was lost. CONCLUSIONS These results suggest that resistance formation in Giardia to nitazoxanide and metronidazole is correlated with altered expression of genes involved in stress response such as heat-shock proteins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Flow cytometry, in combination with advances in bead coding technologies, is maturing as a powerful high-throughput approach for analyzing molecular interactions. Applications of this technology include antibody assays and single nucleotide polymorphism mapping. This review describes the recent development of a microbead flow cytometric approach to analyze RNA-protein interactions and discusses emerging bead coding strategies that together will allow genome-wide identification of RNA-protein complexes. The microbead flow cytometric approach is flexible and provides new opportunities for functional genomic studies and small-molecule screening.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We generated draft genome sequences for two cold-adapted Archaea, Methanogenium frigidum and Methanococcoides burtonii, to identify genotypic characteristics that distinguish them from Archaea with a higher optimal growth temperature (OGT). Comparative genomics revealed trends in amino acid and tRNA composition, and structural features of proteins. Proteins from the cold-adapted Archaea are characterized by a higher content of noncharged polar amino acids, particularly Gin and Thr and a lower content of hydrophobic amino acids, particularly Leu. Sequence data from nine methanogen genomes (OGT 15degrees-98degreesC) were used to generate IIII modeled protein structures. Analysis of the models from the cold-adapted Archaea showed a strong tendency in the solvent-accessible area for more Gin, Thr, and hydrophobic residues and fewer charged residues. A cold shock domain (CSD) protein (CspA homolog) was identified in M. frigidum, two hypothetical proteins with CSD-folds in M. burtonii, and a unique winged helix DNA-binding domain protein in M. burtonii. This suggests that these types of nucleic acid binding proteins have a critical role in cold-adapted Archaea. Structural analysis of tRNA sequences from the Archaea indicated that GC content is the major factor influencing tRNA stability in hyperthermophiles, but not in the psychrophiles, mesophiles or moderate thermophiles. Below an OGT of 60degreesC, the GC content in tRNA was largely unchanged, indicating that any requirement for flexibility of tRNA in psychrophiles is mediated by other means. This is the first time that comparisons have been performed with genome data from Archaea spanning the growth temperature extremes. from psychrophiles to hyperthermophiles

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The AP-2 transcription factor family is presumed to play an important role in the regulation of the keratinocyte squamous differentiation program; however, limited functional data are available to support this. In the present study, the activity and regulation of AP-2 were examined in differentiating human epidermal keratinocytes. We report that (1) AP-2 transcriptional activity decreases in differentiated keratinocytes but remains unchanged in differentiation-insensitive squamous cell carcinoma cell lines, (2) diminished AP-2 transcriptional activity is associated with a loss of specific DNA-bound AP-2 complexes, and (3) there is an increase in the ability of cytoplasmic extracts, derived from differentiated keratinocytes, to phosphorylate AP-2alpha and AP-2beta when cells differentiate. In contrast, extracts from differentiation-insensitive squamous cell carcinoma cells are unable to phosphorylate AP-2 proteins. Finally, the phosphorylation of recombinant AP-2alpha by cytosolic extracts from differentiated keratinocytes is associated with decreased AP-2 DNA-binding activity. Combined, these data indicate that AP-2 trans-activation and DNA-binding activity decrease as keratinocytes differentiate, and that this decreased activity is associated with an enhanced ability to phosphorylate AP-2alpha and beta.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The intestinal spirochaete Brachyspira pilosicoli causes colitis in a wide variety of host species. Little is known about the structure or protein constituents of the B. pilosicoli outer membrane (OM). To identify surface-exposed proteins in this species, membrane vesicles were isolated from B. pilosicoli strain 95-1000 cells by osmotic lysis in dH(2)O followed by isopycnic centrifugation in sucrose density gradients. The membrane vesicles were separated into a high-density fraction (HDMV; p = 1.18 g CM-3) and a low-density fraction (LDMV; rho=1.12 g cm(-3)). Both fractions were free of flagella and soluble protein contamination. LDMV contained predominantly OM markers (lipo-oligosaccharide and a 29 kDa B. pilosicoli OM protein) and was used as a source of antigens to produce mAbs. Five B. pilosicoli-specific mAbs reacting with proteins with molecular masses of 23, 24, 35, 61 and 79 kDa were characterized. The 23 kDa protein was only partially soluble in Triton X-114, whereas the 24 and 35 kDa proteins were enriched in the detergent phase, implying that they were integral membrane proteins or lipoproteins. All three proteins were localized to the B. pilosicoli OM by immunogold labelling using specific mAbs. The gene encoding the abundant, surface-exposed 23 kDa protein was identified by screening a B. pilosicoli 95-1000 genome library with the mAb and was expressed in Escherichia coli. Sequence analysis showed that it encoded a unique lipoprotein, designated BmpC. Recombinant BmpC partitioned predominantly in the OM fraction of E. coli strain SOLR. The mAb to BmpC was used to screen a collection of 13 genetically heterogeneous strains of B. pilosicoli isolated from five different host species. Interestingly, only strain 95-1000 was reactive with the mAb, indicating that either the surface-exposed epitope on BmpC is variable between strains or that the protein is restricted in its distribution within B. pilosicoli.