987 resultados para INTERACTING GALAXIES
Resumo:
A new model for the H2 antagonists binding site is postulated based on adsorption coefficient values of sixteen antagonists, in the affinities constants of the primary and secondary binding sites, and in the chemical characterization of these sites by 3D-QSAR. All study compounds are in the extended conformation and deprotonated form. The lateral validation of the QSARs, CoMFA analysis, affinity constants and chemical similarity data suggest that the antagonists block the proton pump in the H2 receptor interacting with two tyrosines - one in the helix 5, and other in the helix 6.
Resumo:
We investigate the shot noise of nonequilibrium carriers injected into a ballistic conductor and interacting via long-range Coulomb forces. Coulomb interactions are shown to act as an energy analyzer of the profile of injected electrons by means of the fluctuations of the potential barrier at the emitter contact. We show that the details in the energy profile can be extracted from shot-noise measurements in the Coulomb interaction regime, but cannot be obtained from time-averaged quantities or shot-noise measurements in the absence of interactions.
Resumo:
This paper discusses fundamental concepts for the characterization of Langmuir monolayers and Langmuir-Blodgett (LB) films, with emphasis on investigations of material properties at the molecular level. By way of illustration, results for phospholipid monolayers interacting with the drug dipyridamole are highlighted. These results were obtained with several techniques, including in situ grazing incidence X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, fluorescence microscopy, in addition to surface pressure and surface potential isotherms. Also mentioned are the difficulties in producing Langmuir and LB films from macromolecules, and how molecular-level interactions in mixed polymer LB films can be exploited in sensors.
Resumo:
The development of cobalt catalysts to produce hydrogen from ethanol is the goal of this investigation. Co/Al2O3 catalysts were prepared by impregnation and characterized by atomic absorption, nitrogen adsorption, X-ray diffraction, Raman spectroscopy, temperature programmed reduction and carbon analysis. The catalysts contained Co3O4 oxide and Co3+ and Co2+ species interacting with alumina. The cobalt load affects the crystal size and the crystalline structure and higher Co loads influence the reaction mechanism, changing the selectivity of the catalysts, decreasing the amount of CO produced and avoiding the formation of products catalyzed by the support. The ethanol conversion was 50-70% with 10-<1% of CO in the hydrogen.
Resumo:
Total lack of visual experience [dark rearing (DR)] is known to prolong the critical period and delay development of sensory functions in mammalian visual cortex. Recent results show that neurotrophins (NTs) counteract the effects of DR on functional properties of visual cortical cells and exert a strong control on critical period duration. NTs are known to modulate the development and synaptic efficacy of neurotransmitter systems that are affected by DR. However, it is still unknown whether the actions of NTs in dark-reared animals involve interaction with neurotransmitter systems. We have studied the effects of DR on the expression of key molecules in the glutamatergic and GABAergic systems in control and NT-treated animals. We have found that DR reduced the expression of the NMDA receptor 2A subunit and its associated protein PSD-95 (postsynaptic density-95), of GRIP (AMPA glutamate receptor interacting protein), and of the biosynthetic enzyme GAD (glutamic acid decarboxylase). Returning dark-reared animals to light for 2 hr restored normal expression of the above-mentioned proteins almost completely. NT treatment specifically counteracts DR effects; NGF acts primarily on the NMDA system, whereas BDNF acts primarily on the GABAergic system. Finally, the action of NT4 seems to involve both excitatory and inhibitory systems. These data demonstrate that different NTs counteract DR effects by modulating the expression of key molecules of the excitatory and inhibitory neurotransmitter systems
Resumo:
Osteoclasts are cells responsible for bone resorption. These cells undergo extensive membrane re-organization during their polarization for bone resorption and form four distinct membrane domains, namely the ruffled border, the basolateral membrane, the sealing zone and the functional secretory domain. The endocytic/biosynthetic pathway and transcytotic route(s) are important for the resorption process, since the endocytic/biosynthetic pathway brings the specific vesicles to the ruffled border whereas the transcytotic flow is believed to transport the degraded bone matrix away from the resorption lacuna to the functional secretory domain. In the present study, we found a new transcytotic route from the functional secretory domain to the ruffled border, which may compensate membrane loss from the ruffled border during the resorption process. We also found that lipid rafts are essential for the ruffled border-targeted late endosomal pathways. A small GTP-binding protein, Rab7, has earlier been shown to regulate the late steps of the endocytic pathway. In bone-resorbing osteoclasts it is involved in the formation of the ruffled border, which displays several features of late endosomal membranes. Here we discovered a new Rab7-interacting protein, Rac1, which is another small GTP-binding protein and binds to the GTP-form of Rab7 in vitro. We demonstrated further that Rab7 colocalizes with Rac1 at the fusion zone of the ruffled border in bone-resorbing osteoclasts. In other cell types, such as fibroblast-like cells, this colocalization is mainly perinuclear. Because Rac1 is known to control the actin cytoskeleton through its effectors, we suggest that the Rab7-Rac1 interaction may mediate late endosomal transport between microtubules and microfilaments, thus enabling endosomal vesicles to switch tracks from microtubules to microfilaments before their fusion to the ruffled border. We then studied the role of Rab-Rac1 interaction in the slow recycling pathway. We revealed that Rac1 also binds directly to Rab11 and to some other but not all Rab-proteins, suggesting that Rab-Rac1 interaction could be a general regulatory mechanism to direct the intracellular vesicles from microtubule mediated transport to actin filament mediated transport and vice versa. On the basis of our results we thus propose a new hypothesis for these GTPases in the regulation of intracellular membrane flow.
Resumo:
We present an Analytic Model of Intergalactic-medium and GAlaxy (AMIGA) evolution since the dark ages. AMIGA is in the spirit of the popular semi-analytic models of galaxy formation, although it does not use halo merger trees but interpolates halo properties in grids that are progressively built. This strategy is less memory-demanding and allows one to start modeling at sufficiently high redshifts and low halo masses to have trivial boundary conditions. The number of free parameters is minimized by making a causal connection between physical processes usually treated as independent of each other, which leads to more reliable predictions. However, the strongest points of AMIGA are the following: (1) the inclusion of molecular cooling and metal-poor, population III (Pop III) stars with the most dramatic feedback and (2) accurate follow up of the temperature and volume filling factor of neutral, singly ionized, and doubly ionized regions, taking into account the distinct halo mass functions in those environments. We find the following general results. Massive Pop III stars determine the intergalactic medium metallicity and temperature, and the growth of spheroids and disks is self-regulated by that of massive black holes (MBHs) developed from the remnants of those stars. However, the properties of normal galaxies and active galactic nuclei appear to be quite insensitive to Pop III star properties due to the much higher yield of ordinary stars compared to Pop III stars and the dramatic growth of MBHs when normal galaxies begin to develop, which cause the memory loss of the initial conditions.
Resumo:
B3LYP/6-31G(d,p) calculations were used to determine the optimized geometries of the C2H4O-C2H2 and C2H4S-C2H2 heterocyclic hydrogen-bonded complexes. Results of structural, rotational, electronic and vibrational parameters indicate that the hydrogen bonding is non-linear due to the pi bond of the acetylene interacting with the hydrogen atoms of the methyl groups of the three-membered rings. Moreover, the theoretical investigation showed that the non-linearity is much more intriguing, since there is a structural disjunction on the acetylene within the heterocyclic system.
Resumo:
The integration of ecological and evolutionary data is highly valuable for conservation planning. However, it has been rarely used in the marine realm, where the adequate design of marine protected areas (MPAs) is urgently needed. Here, we examined the interacting processes underlying the patterns of genetic structure and demographic strucuture of a highly vulnerable Mediterranean habitat-forming species (i.e. Paramuricea clavata (Risso, 1826)), with particular emphasis on the processes of contemporary dispersal, genetic drift, and colonization of a new population. Isolation by distance and genetic discontinuities were found, and three genetic clusters were detected; each submitted to variations in the relative impact of drift and gene flow. No founder effect was found in the new population. The interplay of ecology and evolution revealed that drift is strongly impacting the smallest, most isolated populations, where partial mortality of individuals was highest. Moreover, the eco-evolutionary analyses entailed important conservation implications for P. clavata. Our study supports the inclusion of habitat-forming organisms in the design of MPAs and highlights the need to account for genetic drift in the development of MPAs. Moreover, it reinforces the importance of integrating genetic and demographic data in marine conservation.
Resumo:
We would like to introduce our group of research, [CONTRA TAEDIUM], created by professionals from different fields, that have contributed in this article. Our purpose is to expose our reflections based on our own experiences, not only in research, but also in teaching. We propose new forms of writing history in order to understand the dairy life of the women and men of the past, from birth to death. We would like to point out that interacting all types of sources is essential to understand our history. But, what really makes sense is to bring our students in the historical methodology and involve them in their education. Moreover, it is necessary to design new teaching materials using the new technologies, although it requires team-work and a great, but satisfying, effort
Resumo:
The reduction kinetics of a CuO/ZnO/Al2O3 catalyst by hydrogen was investigated isothermally and by temperature programmed reduction (TPR). Two reducible Cu2+ species were detected; the first one was identified as CuO bulk and the other as Cu2+ strongly interacting with alumina, possibly in the form of copper aluminate. The activation energies for the reduction of these two species were 60 and 90 kJ mol-1, respectively, and the reaction order with respect to hydrogen was one. The isothermal reduction data showed that the isotropic growth model is the most appropriate to describe the reaction rate data for both Cu2+ species.
Resumo:
Ru-Sn/Al2O3 catalysts with different Sn loadings were prepared by the coimpregnation method. Several characterization techniques such as TPR, pyridine TPD and catalytic tests for dehydrogenation and hydrogenolysis were used to evaluate and compare such catalysts. TPR results indicate that Sn is deposited both onto the support and as species strongly interacting with Ru. Such non selective deposition modifies the acid and metallic functions of the catalysts. Both total acidity and acid strength distribution are affected: total acidity decreases and new sites of lower acid strength are created. Both dehydrogenating and hydrogenolytic activities are strongly diminished by the addition of Sn. Results of catalytic tests for methyl oleate hydrogenation indicate that methyl stearate is the main product, with only minute amounts of oleyl alcohol produced, and that the addition of Sn diminishes the hydrogenation activity.
Resumo:
The catalytic performance of Ni/ZrO2 catalysts loaded with different lanthanum content for steam reforming of ethanol was investigated. Catalysts were characterized by BET surface area, X-ray diffraction, UV-vis spectroscopy, temperature programmed reduction, and X-ray absorption fine structure techniques. Results showed that lanthanum addition led to an increase in the degree of reduction of both NiO and nickel surface species interacting with the support, due to the higher dispersion effect. The best catalytic performance at 450 ºC was found for the Ni/12LZ catalyst, which exhibited an effluent gaseous mixture with the highest H2 yield.
Resumo:
Biscationic amidines bind in the DNA minor groove and present biological activity against a range of infectious diseases. Two new biscationic compounds (bis-α,ω-S-thioureido, amino and sulfide analogues) were synthesized in good yields and fully characterized, and their interaction with DNA was also investigated. Isothermal titration calorimetry (ITC) was used to measure the thermodynamic properties of binding interactions between DNA and these ligands. A double stranded calf thymus DNA immobilized on an electrode surface was used to study the possible DNA-interacting abilities of these compounds towards dsDNA in situ. A remarkable interaction of these compounds with DNA was demonstrated and their potential application as anticancer agents was furthered.
Resumo:
Drug-drug interactions (DDIs) comprise an important cause of adverse drug reactions leading to excess hospitalizations. Drug metabolism is catalyzed by 75% by cytochrome P450 (CYP) enzymes and thus they are often involved in pharmacokinetic DDIs. In general, DDIs are studied in randomized controlled clinical trials in selected study populations. The overall aim of the present studies was to perform observational pharmacoepidemiological surveys on CYP-mediated DDIs in diseases important at the population level. The prevalence of co-administrations of four prodrugs (losartan, codeine, tramadol, and clopidogrel), three sulphonylureas (glibenclamide, glimepiride, and glipizide), or two statins (lovastatin and simvastatin) with well established agents altering CYP activity, as well as of statins with fibrates, was studied in Finland utilizing data from a university hospital medication database (inpatients) and the National Prescription Register of the Social Insurance Institution of Finland, Kela (outpatients). Clinical consequences of potential DDIs were estimated by reviewing laboratory data, and information from hospital care and cause-of-death registers. Concomitant use of study substrates with interacting medication was detected in up to one fifth of patients in both hospital and community settings. Potential CYP3A4 interactions in statin users did not manifest in clear adverse laboratory values but pharmacodynamic DDIs between statins and fibrates predisposed patients to muscular toxicity. Sulphonylurea DDIs with CYP2C9 inhibitors increased the risk of hypoglycaemia. CYP3A4 inhibitor use with clopidogrel was not associated with significant changes in mortality but non-fatal thrombosis and haemorrhage complications were seen less often in this group. Concomitant administration of atorvastatin with clopidogrel moderately attenuated the antithrombotic effect by clopidogrel. The overall mortality was increased in CYP3A4 inducer and clopidogrel co-users. Atorvastatin used concomitantly with prodrug clopidogrel seems to be beneficial in terms of total and LDL cholesterol concentrations, and overall mortality compared with clopidogrel use without interacting medication. In conclusion, CYP-mediated DDIs are a common and often unrecognized consequence of irrational drug prescribing.