990 resultados para Hydrogen yield
Resumo:
The effects of CO2 on the partial oxidation of heptane for hydrogen generation have been studied. Based on the experimental results and thermodynamic equilibrium calculations, the validity of CO2 addition to weaken the hot spots, and the feasibility of the autothermal operation are discussed.
Resumo:
A carbothermal hydrogen reduction method was employed for the preparation of activated carbon supported bimetallic carbide. The resultant samples were characterized by BET surface area measurement, X-ray diffraction, and temperature-programmed reduction-mass spectroscopy. The results showed that nanostructured beta-Mo2C can be formed on the activated carbon by carbothermal hydrogen reduction above 700 degreesC. The particle sizes of beta-Mo2C increase with increasing reaction temperatures and Mo loading. The bimetallic CoMo carbide can be synthesized by the carbothermal hydrogen reduction even around 600 degreesC. The bimetallic CoMo carbide is from carbothermal hydrogen reduction of CoMoO4 precursor and is easily formed when the Co/Mo molar ratio is 1.0. Separation of the bimetallic CoMo carbide phase into Mo carbide and Co metal occurs when the temperature of the reduction is above 700 degreesC. The addition of a second metal such as Co and Ni, decreases the formation temperature of carbide because the second metal promotes formation of CHx species from reactive carbon atoms or groups on carbon material and hydrogen, which further carburizes oxide precursors. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Nanostructured tungsten carbides were synthesized, for the first time, with a size distribution of 5-12 nm on ultrahigh surface area carbon material, by carbothermal hydrogen reduction (CHR) at 850degreesC and metal Ni promoted CHR at 650 degreesC.
Resumo:
Partial oxidation of n-heptane (POH) for hydrogen generation was studied over several catalysts between 700 and 850degreesC. Modified Ni-based/gamma-Al2O3 catalyst exhibited not only good catalytic activity but also good carbon deposition resistance ability. Under the modified reaction conditions, 100% n-heptane conversion and 93% hydrogen selectivity can be obtained.
Resumo:
A 2-kW-class chemical oxygen-iodine laser (COIL) using nitrogen buffer gas has been developed and tested since industrial applications of COIL devices will require the use of nitrogen as the buffer gas. The laser, with a gain length of 11.7 cm, is energized by a square pipe-array jet-type singlet oxygen generator (SPJSOG) and employs a nozzle bank with a designed Mach number of 2.5. The SPJSOG has advantages over the traditional plate-type JSOG in that it has less requirements on basic hydrogen peroxide (BHP) pump, and more important, it has much better operational stability. The SPJSOG without a cold trap and a gas-liquid separator could provide reliable operations for a total gas flow rate up to 450 mmol/s and with a low liquid driving pressure of around 0.7 atm or even lower. The nozzle bank was specially designed for a COIL using nitrogen as the buffer gas. The cavity was designed for a Mach number of 2.5, in order to provide a gas speed and static temperature in the cavity similar to that for a traditional COIL with helium buffer gas and a Mach 2 nozzle. An output power of 2.6 kW was obtained for a chlorine flow rate of 140 mmol/s, corresponding to a chemical efficiency of 20.4%. When the chlorine flow rate was reduced to 115 mmol/s, a higher chemical efficiency of 22.7% was attained. Measurements showed that the SPJSOG during normal operation could provide a singlet oxygen yield Y greater than or equal to 55%, a chlorine utilization U greater than or equal to 85%, and a relative water vapor concentration w = [H2O]/([O-2] + [Cl-2]) less than or equal to 0.1.
Resumo:
In this study, conventional TiO2 powder was heated in hydrogen (H-2) gas at a high temperature as pretreatment. The photoactivity of the treated TiO2 samples was evaluated in the photodegradation of sulfosalicylic acid (SSA) in aqueous suspension. The experimental results demonstrated that the photodegradation rates of SSA were significantly enhanced by using the H-2-treated TiO2 catalysts and an optimum temperature for the H-2 treatment was found to be of 500-600 degreesC. The in situ electron paramagnetic resonance (EPR) signal intensity of oxygen vacancies (OV) and trivalent titanium (Ti3+) associated with the photocatalytic activity was studied. The results proved the presence of OV and Ti3+ in the lattice of the H2-treated TiO2 and indicated that both were contributed to the enhancement of photocatalytic activity. Moreover, the experimental results presented that the EPR signal intensity of OV and Ti3+ in the H-2-treated TiO2 samples after 10 months storage was still significant higher than that in the untreated TiO2 catalyst. The experiment also demonstrated that the significant enhancement occurred in the photodegradation of phenol using the H-2-treated TiO2. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The reaction of producing hydrogen for fuel cell which used normal octane as gasoline or diesel oil reactant through catalytic partial oxidizing and steam reforming method has been researched in the fixed-bed reactor. A series of catalysts that mainly used nickel supported on Al2O3 have been studied. It showed that the activity of the catalyst was increased with the content of nickel by using only nickel supported on Al2O3. However, its activity was not obviously increased when the content of nickel was over 5 wt%. The conversion ratio of normal octane and hydrogen selectivity were higher at higher reaction temperature. The single noble catalyst of palladium had better stability compared with that of platinum catalyst although their activity and selectivity were similar during the experimental reaction temperature. The prepared bimetallic catalyst consisted mainly of nickel and little noble metal of palladium supported on Al2O3. It showed that this catalyst had higher activity and selectivity, especially at lower or higher reaction temperatures compared with single nickel or palladium catalyst, and better stability. ((C) 2001 International Association for Hydrogen Energy. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
In recent years, the role of human activities in changing sediment yield has become more apparent for the construction of hydraulic engineering and water conservation projections in the Upper Yangtze River, but it has not been evaluated at the macro scale. Taking Sichuan Province and Chongqing City as an example, this paper studies the relationship between socio-economic factors and sediment yield in the Upper Yangtze River based on section data in 1989 and 2007. The results show that sediment yield is significantly correlated with population density and cultivated area, in which the former appears to be more closely related to sediment yield. Moreover, in the relation of sediment yield vs. population density, a critical value of population density exists, below which the sediment yield increases with the increase of population density and over which the sediment yield increases with the decrease of population density. The phenomenon essentially reflects the influence of natural factors, such as topography, precipitation and soil property, and some human activities on sediment yield. The region with a higher population density than critical value is located in the east of the study area and is characterized by plains, hills and low mountains, whereas the opposite is located in the west and characterized by middle and high mountains. In the eastern region, more people live on the lands with a low slope where regional soil erosion is slight; therefore, sediment yield is negatively related with population density. In contrast, in the western region, the population tends to aggregate in the areas with abundant soil and water resources which usually lead to a higher intensity of natural erosion, and in turn, high-intensity agricultural practices in these areas may further strengthen local soil erosion. It is also found that population tends to move from the areas with bad environment and high sediment yield to the areas with more comfortable environment and less sediment yield. The natural factors have greater influence on sediment yield of western region than that of eastern region. Generally, the natural factors play a dominant role on sediment yield in the Upper Yangtze River.