976 resultados para Hindlimb Muscles


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human mirror neuron system (MNS) is hypothesized to be crucial to social cognition. Given that key MNS-input regions such as the superior temporal sulcus are involved in biological motion processing, and mirror neuron activity in monkeys has been shown to vary with visual attention, aberrant MNS function may be partly attributable to atypical visual input. To examine the relationship between gaze pattern and interpersonal motor resonance (IMR; an index of putative MNS activity), healthy right-handed participants aged 18-40 (n = 26) viewed videos of transitive grasping actions or static hands, whilst the left primary motor cortex received transcranial magnetic stimulation. Motor-evoked potentials recorded in contralateral hand muscles were used to determine IMR. Participants also underwent eyetracking analysis to assess gaze patterns whilst viewing the same videos. No relationship was observed between predictive gaze and IMR. However, IMR was positively associated with fixation counts in areas of biological motion in the videos, and negatively associated with object areas. These findings are discussed with reference to visual influences on the MNS, and the possibility that MNS atypicalities might be influenced by visual processes such as aberrant gaze pattern.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unlike exercising mammals, migratory birds fuel very high intensity exercise (e.g., flight) with fatty acids delivered from the adipose tissue to the working muscles by the circulatory system. Given the primary importance of fatty acids for fueling intense exercise, we discuss the likely limiting steps in lipid transport and oxidation for exercising birds and the ecological factors that affect the quality and quantity of fat stored in wild birds. Most stored lipids in migratory birds are comprised of three fatty acids (16:0, 18:1 and 18:2) even though migratory birds have diverse food habits. Diet selection and selective metabolism of lipids play important roles in determining the fatty acid composition of birds which, in turn, affects energetic performance during intense exercise. As such, migratory birds offer an intriguing model for studying the implications of lipid metabolism and obesity on exercise performance. We conclude with a discussion of the energetic costs of migratory flight and stopover in birds, and its implications for bird migration strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We studied the energy and protein balance of a Thrush Nightingale Luscinia luscinia, a small long-distance migrant, during repeated 12-hr long flights in a wind tunnel and during subsequent two-day fueling periods. From the energy budgets we estimated the power requirements for migratory flight in this 26 g bird at 1.91 Watts. This is low compared to flight cost estimates in birds of similar mass and with similar wing shape. This suggests that power requirements for migratory flight are lower than the power requirements for nonmigratory flight. From excreta production during flight, and nitrogen and energy balance during subsequent fueling, the dry protein proportion of stores was estimated to be around 10%. A net catabolism of protein during migratory flight along with that of fat may reflect a physiologically inevitable process, a means of providing extra water to counteract dehydration, a production of uric acid for anti-oxidative purposes, and adaptive changes in the size of flight muscles and digestive organs in the exercising animal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although it is important for prospective studies, the reliability of quantitative measures of cervical muscle size on magnetic resonance imaging is not well established. The aim of the current work was to assess the long-term reliability of measurements of cervical muscle size. In addition, we examined the utility of selecting specific sub-regions of muscles at each vertebral level, averaging between sides of the body, and pooling muscles into larger groups. Axial scans from the base of skull to the third thoracic vertebra were performed in 20 healthy male subjects at baseline and 1.5 years later. We evaluated the semi-spinalis capitis, splenius capitis, spinalis cervicis, longus capitis, longus colli, levator scapulae, sternocleidomastoid, anterior scalenes and middle with posterior scalenes. Bland-Altman analysis showed all measurements to be repeatable between testing-days. Reliability was typically best when entire muscle volume was measured (co-efficients of variation (CVs): 3.3-8.1% depending on muscle). However, when the size of the muscle was assessed at specific vertebral levels, similar measurement precision was achieved (CVs: 2.7-7.6%). A median of 4-6 images were measured at the specific vertebral levels versus 18-37 images for entire muscle volume. This would represent considerable time saving. Based on the findings we also recommend measuring both sides of the body and calculating an average value. Pooling specific muscles into the deep neck flexors (CV: 3.5%) and neck extensors (CV: 2.7%) can serve to reduce variability further. The results of the current study help to establish outcome measures for interventional studies and for sample size estimation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: The present study examined the effects of repetitive hopping training on muscle activation profiles and fascicle–tendon interaction in the elderly. Methods: 20 physically active elderly men were randomly assigned for training (TG) and control groups (CG). TG performed supervised bilateral short contact hopping training with progressively increasing training volume. Measurements were performed before the training period (BEF) as well as after 2 weeks (2 W) and 11 weeks (11 W) of training. During measurements, the gastrocnemius medialis–muscle (GaM) fascicle and its outer Achilles tendon length changes during hopping were examined by ultrasonography together with electromyographic (EMG) activities of calf muscles, kinematics, and kinetics. Results: At 2 W, the ankle joint stiffness was increased by 21.0 ± 19.3 % and contact time decreased by 9.4 ± 7.8 % in TG. Thereafter, from 2–11 W the jumping height increased 56.2 ± 18.1 % in TG. Simultaneously, tendon forces increased 24.3 ± 19.0 % but tendon stiffness did not change. GaM fascicles shifted to shorter operating lengths after training without any changes in their length modifications during the contact phase of hopping. Normalized EMG amplitudes during hopping did not change with training. Conclusions: The present study shows that 11 W of hopping training improves the performance of physically active elderly men. This improvement is achieved with shorter GaM operating lengths and, therefore, increased fascicle stiffness and improved tendon utilization after training. Based on these results, hopping training could be recommended for healthy fit elderly to retain and improve rapid force production capacity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One serious side effect of statin drugs is skeletal muscle myopathy. Although the mechanism(s) responsible for statin myopathy remains to be fully determined, an increase in muscle atrophy gene expression and changes in mitochondrial content and/or function have been proposed to play a role. In this study, we examined the relationship between statin-induced expression of muscle atrophy genes, regulators of mitochondrial biogenesis, and markers of mitochondrial content in slow- (ST) and fast-twitch (FT) rat skeletal muscles. Male Sprague Dawley rats were treated with simvastatin (60 or 80 mg·kg(-1)·day(-1)) or vehicle control via oral gavage for 14 days. In the absence of overt muscle damage, simvastatin treatment induced an increase in atrogin-1, MuRF1 and myostatin mRNA expression; however, these were not associated with changes in peroxisome proliferator gamma co-activator 1 alpha (PGC-1α) protein or markers of mitochondrial content. Simvastatin did, however, increase neuronal nitric oxide synthase (nNOS), endothelial NOS (eNOS) and AMPK α-subunit protein expression, and tended to increase total NOS activity, in FT but not ST muscles. Furthermore, simvastatin induced a decrease in β-hydroxyacyl CoA dehydrogenase (β-HAD) activity only in FT muscles. These findings suggest that the statin-induced activation of muscle atrophy genes occurs independent of changes in PGC-1α protein and mitochondrial content. Moreover, muscle-specific increases in NOS expression and possibly NO production, and decreases in fatty acid oxidation, could contribute to the previously reported development of overt statin-induced muscle damage in FT muscles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pattern of tonic and phasic components in an EMG signal reflects the underlying behaviour of the central nervous system (CNS) in controlling the musculature. One avenue for gaining a better understanding of this behaviour is to seek a quantitative characterisation of these phasic and tonic components. We propose that these signal characteristics can range between unvarying, tonic and intermittent, phasic activation through a continuum of EMG amplitude modulation. In this paper, we present two new algorithms for quantifying amplitude modulation: a linear-envelope approach, and a mathematical morphology approach. In addition we present an algorithm for synthesising EMG signals with known amplitude modulation. The efficacy of the synthesis algorithm is demonstrated using real EMG data. We present an evaluation and comparison of the two algorithms for quantifying amplitude modulation based on synthetic data generated by the proposed synthesis algorithm. The results demonstrate that the EMG synthesis parameters represent 91.9% and 96.2% of the variance of linear-envelopes extracted from lumbo-pelvic muscle EMG signals collected from subjects performing a repetitive-movement task. This depended, however, on the muscle and movement-speed considered (F=4.02, p<0.001). Coefficients of determination between input and output amplitude modulation variables were used to quantify the accuracy of the linear-envelope and morphological signal processing algorithms. The linear-envelope algorithm exhibited higher coefficients of determination than the most accurate morphological approach (and hence greater accuracy, T=8.16, p<0.001). Similarly, the standard deviation of the coefficients of determination was 1.691 times smaller (p<0.001). This signal processing algorithm represents a novel tool for the quantification of amplitude modulation in continuous EMG signals and can be used in the study of CNS motor control of the musculature in repetitive-movement tasks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: The current study aimed to examine the effectiveness of a resistive vibration exercise countermeasure during prolonged bed-rest in preventing lower-limb muscle atrophy. METHODS: 20 male subjects underwent 56-days of bed-rest and were assigned to either an inactive control, or a countermeasure group which performed high-load resistive exercises (including squats, heel raises and toe raises) with whole-body vibration. Magnetic resonance imaging of the lower-limbs was performed at two-weekly intervals. Volume of individual muscles was calculated. RESULTS: Countermeasure exercise reduced atrophy in the triceps surae and the vastii muscles (F>3.0, p<.025). Atrophy of the peroneals, tibialis posterior and toe flexors was less in the countermeasure-subjects, though statistical evidence for this was weak (F

Relevância:

10.00% 10.00%

Publicador:

Resumo:

STUDY DESIGN: Randomized controlled trial. OBJECTIVE: Determine the effectiveness a resistive exercise countermeasure with whole-body vibration in relation to lumbo-pelvic muscle and spinal morphology changes during simulated spaceflight (bed-rest). SUMMARY OF BACKGROUND DATA: Spinal lengthening, flattening of the spinal curves, increases in disc size, and muscle atrophy are commonly seen in spaceflight simulation. This may represent a risk for low back injury. Consideration of exercise countermeasures against these changes is critical for success of long-term spaceflight missions. METHODS: Twenty healthy male subjects underwent 8-weeks of bed-rest with 6-months follow-up and were randomly allocated to an inactive control or countermeasure exercise group. Magnetic resonance imaging of the lumbo-pelvic region was conducted at regular time-points during and after bed-rest. Using uniplanar images at L4, cross-sectional areas of the multifidus, lumbar erector spinae, quadratus lumborum, psoas, anterolateral abdominal, and rectus abdominis muscles were measured. Sagittal scans were used to assess lumbar spine morphology (length, sagittal disc area and height, and intervertebral angles). RESULTS: The countermeasure group exhibited less multifidus muscle atrophy (P = 0.024) and its atrophy did not persist long-term as in the control group (up to 3-months; P < 0.006). Spinal lengthening (P = 0.03) and increases in disc area (P = 0.041) were also reduced. Significant partial correlations (P < 0.001) existed between spinal morphology and muscle cross-sectional area changes. CONCLUSION: The resistive vibration exercise countermeasure reduced, but did not entirely prevent, multifidus muscle atrophy and passive spinal tissue deconditioning during bed-rest. Atrophy of the multifidus muscles was persistent long-term in the inactive subjects. Future work could consider closer attention to spinal posture during exercise and optimizing exercise dose.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Patients with medical, orthopaedic and surgical conditions are often assigned to bed-rest and/or immobilised in orthopaedic devices. Although such conditions lead to muscle atrophy, no studies have yet considered differential atrophy of the lower-limb musculature during inactivity to enable the development of rehabilitative exercise programmes. Bed-rest is a model used to simulate the effects of spaceflight and physical inactivity. Ten male subjects underwent 56-days of bed-rest. Magnetic resonance imaging of the lower-limbs was performed at 2-weekly intervals during bed-rest. Volume of individual muscles of the lower-limb and subsequently, rates of atrophy were calculated. Rates of atrophy differed (F = 7.4, p < 0.0001) between the muscles with the greatest rates of atrophy seen in the medial gastrocnemius, soleus and vastii (p < 0.00000002). The hamstring muscles were also affected (p < 0.00015). Atrophy was less in the ankle dorsiflexors and anteromedial hip muscles (p > 0.081). Differential rates of atrophy were seen in synergistic muscles (e.g. adductor magnus > adductor longus, p = 0.009; medial gastrocnemius > lateral gastrocnemius, p = 0.002; vastii > rectus femoris, p = 0.0002). These results demonstrate that muscle imbalances can occur after extended periods of reduced postural muscle activity, potentially hampering recovery on return to full upright body position. Such deconditioned patients should be prescribed "closed-chain" simulated resistance exercises, which target the lower-limb antigravity extensor muscles which were most affected in bed-rest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To evaluate the effect of short-duration, high-load resistive exercise, with and without whole body vibration on lumbar muscle size, intervertebral disk and spinal morphology changes, and low back pain (LBP) incidence during prolonged bed rest, 24 subjects underwent 60 days of head-down tilt bed rest and performed either resistive vibration exercise (n = 7), resistive exercise only (n = 8), or no exercise (n = 9; 2nd Berlin Bed-Rest Study). Discal and spinal shape was measured from sagittal plane magnetic resonance images. Cross-sectional areas (CSAs) of the multifidus, erector spinae, quadratus lumborum, and psoas were measured on para-axial magnetic resonance images. LBP incidence was assessed with questionnaires at regular intervals. The countermeasures reduced CSA loss in the multifidus, lumbar erector spinae and quadratus lumborum muscles, with greater increases in psoas muscle CSA seen in the countermeasure groups (P ≤ 0.004). There was little statistical evidence for an additional effect of whole body vibration above resistive exercise alone on these muscle changes. Exercise subjects reported LBP more frequently in the first week of bed rest, but this was only significant in resistive exercise only (P = 0.011 vs. control, resistive vibration exercise vs. control: P = 0.56). No effect of the countermeasures on changes in spinal morphology was seen (P ≥ 0.22). The results suggest that high-load resistive exercise, with or without whole body vibration, performed 3 days/wk can reduce lumbar muscle atrophy, but further countermeasure optimization is required.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Little is known about the motor control of the lumbo-pelvic musculature in microgravity and its simulation (bed-rest). Analysis of spectral and temporal electromyographic variables can provide information on motor control relevant for normal function. This study examined the effect of 56-days of bed-rest with 1-year follow-up in 10 male subjects on the median frequency and the activation timing in surface electromyographic recordings from five superficial lumbo-pelvic muscles during a repetitive knee movement task. Trunk fat mass (from whole body-composition measurements) and movement accuracy as possible explanatory factors were included. Increased median frequency was observed in the lumbar erector spinae starting late in bed-rest, but this was not seen in its synergist, the thoracic erector spinae (p<.0001). These changes persisted up to 1-year after bed-rest and were independent of changes in body-composition or movement accuracy. Analysis suggested decreases of median frequency (p<.0001) in the abdominal and gluteal muscles to result from increased (p<.01) trunk fat levels during and after bed-rest. No changes in lumbo-pelvic muscle activation timing were seen. The results suggest that bed-rest particularly affects the shorter lumbar erector spinae and that the temporal sequencing of superficial lumbo-pelvic muscle activation is relatively robust.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As part of the 2nd Berlin BedRest Study (BBR2-2), we investigated the pattern of muscle atrophy of the postero-lateral hip and hamstring musculature during prolonged inactivity and the effectiveness of two exercise countermeasures. Twenty-four male subjects underwent 60 days of head-down tilt bedrest and were assigned to an inactive control (CTR), resistive vibration exercise (RVE), or resistive exercise alone (RE) group. Magnetic resonance imaging (MRI) of the hip and thigh was taken before, during, and at end of bedrest. Volume of posterolateral hip and hamstring musculature was calculated, and the rate of muscle atrophy and the effect of countermeasure exercises were examined. After 60 days of bedrest, the CTR group showed differential rates of muscle volume loss (F = 21.44; P ≤ 0.0001) with fastest losses seen in the semi-membranosus, quadratus femoris and biceps femoris long head followed by the gluteal and remaining hamstring musculature. Whole body vibration did not appear to have an additional effect above resistive exercise in preserving muscle volume. RE and RVE prevented and/or reduced muscle atrophy of the gluteal, semi-membranosus, and biceps femoris long head muscles. Some muscle volumes in the countermeasure groups displayed faster recovery times than the CTR group. Differential atrophy occurred in the postero-lateral hip musculature following a prolonged period of unloading. Short-duration high-load resistive exercise during bedrest reduced muscle atrophy in the mono-articular hip extensors and selected hamstring muscles. Future countermeasure design should consider including isolated resistive hamstring curls to target this muscle group and reduce the potential for development of muscle imbalances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

STUDY DESIGN: prospective longitudinal study. OBJECTIVE: to evaluate the effect of bed-rest on the lumbar musculature and soft-tissues. SUMMARY OF BACKGROUND DATA: earlier work has suggested that the risk of low back injury is higher after overnight bed-rest or spaceflight. Changes in spinal morphology and atrophy in musculature important in stabilizing the spine could be responsible for this, but there are limited data on how the lumbar musculature and vertebral structures are affected during bed-rest. METHODS: nine male subjects underwent 60-days head-down tilt bed-rest as part of the second Berlin Bed-Rest Study. Disc volume, intervertebral spinal length, intervertebral lordosis angle, and disc height were measured on sagittal plane magnetic resonance images. Axial magnetic resonance images were used to measure cross-sectional areas (CSAs) of the multifidus (MF), erector spinae, quadratus lumborum, and psoas from L1 to L5. Subjects completed low back pain (LBP) questionnaires for the first 7-days after bed-rest. RESULTS: increases in disc volume, spinal length (greatest at lower lumbar spine), loss of the lower lumbar lordosis, and move to a more lordotic position at the upper lumbar spine (P < 0.0097) were seen. The CSAs of all muscles changed (P < 0.002), with the rate of atrophy greatest at L4 and L5 in MF (P < 0.002) and at L1 and L2 in the erector spinae (P = 0.0006). Atrophy of the quadratus lumborum was consistent throughout the muscle (P = 0.15), but CSA of psoas muscle increased (P < 0.0001). Subjects who reported LBP after bed-rest showed, before reambulation, greater increases in posterior disc height, and greater losses of MF CSA at L4 and L5 than subjects who did not report pain (all P < 0.085). CONCLUSION: these results provide evidence that changes in the lumbar discs during bed-rest and selective atrophy of the MF muscle may be important factors in the occurrence of LBP after prolonged bed-rest.