971 resultados para Heavy oil
Resumo:
For the 4f(N-1)5d configuration the Coulomb interaction between f and d electrons was parameterized by F-k(fd) with K = 2, 4, and G(K)(fd) with K = 1, 3, 5. The spin-orbit interaction for 4f and 5d electrons can be parameterized by xi (f) and xi (d) respectively, which can be compounded into one lambda : lambda = axi (f) + bxi (d), where a and b are the corresponding coefficients. The energy expressions of H-e(fd) of the chief low-energy levels of 4f(N-) (1)5d configuration for heavy lanthanide ions were calculated and the corresponding spin-orbit parameters lambda were also given in LS coupling, which are profitable in analyzing the spectra of the heavy lanthanide ions.
Resumo:
This paper presents the results of the adsorption of heavy rare earth ions (Gd(III), Tb(III), Dy(III), Ho(III), Er(III), Tm(III), Yb(III), Lu(III) and Y(III)) from hydrochloric acid solutions at 30 degreesC by the extraction resin containing 1-hexyl-4-ethyloctyl isopropylphosphonic acid (HEOPPA), which has higher steric hindrance, higher selectivities and lower extraction and stripping acidity than di(2-ethylhexyl)phosphoric acid (DERPA) or 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (HEH/EHP). The dependence of acid concentration, flow rate and amounts of rare earth ions sorbed on the separation of Er-Tm, Tm-Yb and Er-Tm-Yb mixtures has been studied. The baseline chromatographic separation of Er-Tm-Yb mixture has been observed. Satisfactory results with purity and yield of Tm2O3>99.71% and >71.25%, Er2O3>99-81% and >94.17%, and Yb2O3>99.74% and >89.83%, respectively, have been obtained. The parameters such,as resolution, separation factors and efficiencies have been determined as a function of acidity, loading of rare earth elements and flow rates. The stoichiometry of the extraction of rare earth ions has been suggested as well.
Resumo:
The essential oil in purple magnolia leaves was extracted by steam distillation approaches. The oil obtained was dried with anhydrous magnesium sulfate. According to the analysis of gas chromatography/mass spectrometry, more than 40 peaks were separated and 32 compounds were identified. The identified constituents represent 95% of the peak area of the essential oil. The main compounds were germacrene-D, santolina triene, caryophyllene, 1,3,7-octatriene, 3,7-dimethyl, and camphene, etc.
Resumo:
Extraction resins, of the type of;levextrel, (which is a collective term for styrene/divinylbenzene based copolymers of predominantly macroporous structure that contain a selective extractant) are important for the recovery and separation of metal ions, as they combine features of solvent extraction and ion exchange resins. This paper presents the results of the adsorption of heavy rare earth ions (Ho(III), Er(III), Tm(III), Yb(III), Lu(III) and Y(III)) from hydrochloric acid solutions at 0.2 mol/L ionic strength and 50 degrees C by the extraction resin containing di (2,4,4-trimethyl pentyl) phosphinic acid (Cyanex 272) and the chromatographic separation of (Er(III), Tm(III) and Yb(III)). Technological separation products, with purity and yield of Tm2O3 >99.97%, >80%, Er2O3 >99.9%, >94% and Yb2O3 >99.8%, >80% respectively, have been obtained from a feed having the composition Tm2O3 60%, Er2O3 10%, and Yb2O3 3%, the others 27%. The distribution coefficients, extraction equilibrium constants and separation factors have been determined as a function of acidity, loading of the resin and rare earths, flow rates and column ratios. The resolutions and efficiencies of separation of Er/Tm/Yb each other have been calculated. The stoichiometry of the extraction of rare earth ions has been suggested as well.