970 resultados para Harold Pinter
Resumo:
O trabalho tem como proposta avaliar a postura das organizações nas mídias sociais digitais, considerando o fato de que esses novos ambientes virtuais têm modificado drasticamente a maneira pela qual elas promovem o relacionamento com seus públicos estratégicos. O objetivo principal da pesquisa é identificar e compreender como as organizações se posicionam diante de comentários desfavoráveis nas mídias sociais digitais que possam impactar sua imagem e reputação, bem como mostrar a importância de monitorar constantemente o consumidor e dialogar com ele nos canais digitais para evitar riscos à marca. A metodologia aplicada denomina-se Estudo de Casos Múltiplos, por meio da qual analisaram-se os comentários desfavoráveis às marcas: Vivo, Tim e Oi, na página do Facebook, durante o mês de setembro de 2015. Construiu-se um protocolo de pesquisa, e realizou-se o acompanhamento dessas marcas analisando-lhes os posts e os comentários desfavoráveis coletados no período. Constatou-se, após tais procedimentos que as operadoras apresentam frequentemente dificuldades para se relacionar com os públicos nas mídias sociais digitais, o que as coloca em risco quanto à sua imagem e reputação.
Resumo:
Hydrogen–deuterium exchange experiments have been used previously to investigate the structures of well defined states of a given protein. These include the native state, the unfolded state, and any intermediates that can be stably populated at equilibrium. More recently, the hydrogen–deuterium exchange technique has been applied in kinetic labeling experiments to probe the structures of transiently formed intermediates on the kinetic folding pathway of a given protein. From these equilibrium and nonequilibrium studies, protection factors are usually obtained. These protection factors are defined as the ratio of the rate of exchange of a given backbone amide when it is in a fully solvent-exposed state (usually obtained from model peptides) to the rate of exchange of that amide in some state of the protein or in some intermediate on the folding pathway of the protein. This definition is straightforward for the case of equilibrium studies; however, it is less clear-cut for the case of transient kinetic intermediates. To clarify the concept for the case of burst-phase intermediates, we have introduced and mathematically defined two different types of protection factors: one is Pstruc, which is more related to the structure of the intermediate, and the other is Papp, which is more related to the stability of the intermediate. Kinetic hydrogen–deuterium exchange data from disulfide-intact ribonuclease A and from cytochrome c are discussed to explain the use and implications of these two definitions.
Resumo:
Adipose differentiation is an important part of the energy homeostasis system of higher organisms. Recent data have suggested that this process is controlled by an interplay of transcription factors including PPARγ, the C/EBPs, and ADD1/SREBP1. Although these factors interact functionally to initiate the program of differentiation, there are no data concerning specific mechanisms of interaction. We show here that the expression of ADD1/SREBP1 specifically increases the activity of PPARγ but not other isoforms, PPARα, or PPARδ. This activation occurs through the ligand-binding domain of PPARγ when it is fused to the DNA-binding domain of Gal4. The stimulation of PPARγ by ADD1/SREBP1 does not require coexpression in the same cells; supernatants from cultures that express ADD1/SREBP1 augment the transcriptional activity of PPARγ. Finally, we demonstrate directly that cells expressing ADD1/SREBP1 produce and secrete lipid molecule(s) that bind directly to PPARγ, displacing the binding of radioactive thiazolidinedione ligands. These data establish that ADD1/SREBP1 can control the production of endogenous ligand(s) for PPARγ and suggest a mechanism for coordinating the actions of these adipogenic factors.
Resumo:
A computational system for the prediction of polymorphic loci directly and efficiently from human genomic sequence was developed and verified. A suite of programs, collectively called pompous (polymorphic marker prediction of ubiquitous simple sequences) detects tandem repeats ranging from dinucleotides up to 250 mers, scores them according to predicted level of polymorphism, and designs appropriate flanking primers for PCR amplification. This approach was validated on an approximately 750-kilobase region of human chromosome 3p21.3, involved in lung and breast carcinoma homozygous deletions. Target DNA from 36 paired B lymphoblastoid and lung cancer lines was amplified and allelotyped for 33 loci predicted by pompous to be variable in repeat size. We found that among those 36 predominately Caucasian individuals 22 of the 33 (67%) predicted loci were polymorphic with an average heterozygosity of 0.42. Allele loss in this region was found in 27/36 (75%) of the tumor lines using these markers. pompous provides the genetic researcher with an additional tool for the rapid and efficient identification of polymorphic markers, and through a World Wide Web site, investigators can use pompous to identify polymorphic markers for their research. A catalog of 13,261 potential polymorphic markers and associated primer sets has been created from the analysis of 141,779,504 base pairs of human genomic sequence in GenBank. This data is available on our Web site (pompous.swmed.edu) and will be updated periodically as GenBank is expanded and algorithm accuracy is improved.
Resumo:
Nonobese diabetic (NOD) mice develop insulin-dependent diabetes mellitus due to autoimmune T lymphocyte-mediated destruction of pancreatic β cells. Although both major histocompatibility complex class I-restricted CD8+ and class II-restricted CD4+ T cell subsets are required, the specific role each subset plays in the pathogenic process is still unclear. Here we show that class I-dependent T cells are required for all but the terminal stages of autoimmune diabetes development. To characterize the diabetogenic CD8+ T cells responsible, we isolated and propagated in vitro CD8+ T cells from the earliest insulitic lesions of NOD mice. They were cytotoxic to NOD islet cells, restricted to H-2Kd, and showed a diverse T cell receptor β chain repertoire. In contrast, their α chain repertoire was more restricted, with a recurrent amino acid sequence motif in the complementarity-determining region 3 loop and a prevalence of Vα17 family members frequently joined to the Jα42 gene segment. These results suggest that a number of the CD8+ T cells participating in the initial phase of autoimmune β cell destruction recognize a common structural component of Kd/peptide complexes on pancreatic β cells, possibly a single peptide.
Resumo:
Metallothioneins (MTs) are a family of metal binding proteins that have been proposed to participate in a cellular defense against zinc toxicity and free radicals. In the present study, we investigated whether increased expression of MT in MT-1 isoform-overexpressing transgenic mice (MT-TG) affords protection against mild focal cerebral ischemia and reperfusion. Transient focal ischemia was induced in control (wild type) and MT-TG mice by occluding the right middle cerebral artery for 45 min. Upon reperfusion, cerebral edema slowly developed and peaked at 24 hr as shown by T2-weighted MRI. The volume of affected tissue was on the average 42% smaller in MT-TG mice compared with control mice at 6, 9, 24, and 72 hr and 14 days postreperfusion (P < 0.01). In addition, functional studies showed that 3 weeks after reperfusion MT-TG mice showed a significantly better motor performance compared with control mice (P = 0.011). Although cortical baseline levels of MT-1 mRNA were similar in control and MT-TG mice, there was an increase in MT-1 mRNA levels in the ischemic cortex of MT-TG mice to 7.5 times baseline levels compared with an increase to 2.3 times baseline levels in control mice 24 hr after reperfusion. In addition, MT-TG mice showed an increased MT immunoreactivity in astrocytes, vascular endothelial cells, and neurons 24 hr after reperfusion whereas in control mice MT immunoreactivity was restricted mainly to astrocytes and decreased in the infarcted tissue. These results provide evidence that increased expression of MT-1 protects against focal cerebral ischemia and reperfusion.
Resumo:
Cell adhesion molecules (CAMs) are known to be involved in a variety of developmental processes that play key roles in the establishment of synaptic connectivity during embryonic development, but recent evidence implicates the same molecules in synaptic plasticity of the adult. In the present study, we have used neural CAM (NCAM)-deficient mice, which have learning and behavioral deficits, to evaluate NCAM function in the hippocampal mossy fiber system. Morphological studies demonstrated that fasciculation and laminar growth of mossy fibers were strongly affected, leading to innervation of CA3 pyramidal cells at ectopic sites, whereas individual mossy fiber boutons appeared normal. Electrophysiological recordings performed in hippocampal slice preparations revealed that both basal synaptic transmission and two forms of short-term plasticity, i.e., paired-pulse facilitation and frequency facilitation, were normal in mice lacking all forms of NCAM. However, long-term potentiation of glutamatergic excitatory synapses after brief trains of repetitive stimulation was abolished. Taken together, these results strongly suggest that in the hippocampal mossy fiber system, NCAM is essential both for correct axonal growth and synaptogenesis and for long-term changes in synaptic strength.
Resumo:
A separation technique employing a microfabricated sieve has been demonstrated by observing the motion of DNA molecules of different size. The sieve consists of a two-dimensional lattice of obstacles whose asymmetric disposition rectifies the Brownian motion of molecules driven through the device, causing them to follow paths that depend on their diffusion coefficient. A nominal 6% resolution by length of DNA molecules in the size range 15–30 kbp may be achieved in a 4-inch (10-cm) silicon wafer. The advantage of this method is that samples can be loaded and sorted continuously, in contrast to the batch mode commonly used in gel electrophoresis.
Resumo:
Apolipoprotein B (apoB) mRNA editing catalyzed by apoB mRNA editing catalytic subunit 1 (APOBEC-1) has been proposed to be a nuclear process. To test this hypothesis, the subcellular distribution of hemagglutinin-(HA) tagged APOBEC-1 expressed in transiently transfected hepatoma cells was determined by indirect immunofluorescence microscopy. HA-APOBEC-1 was detected in both the nucleus and cytoplasm of rat and human hepatoma cells. Mutagenesis of APOBEC-1 demonstrated that the N-terminal 56 amino acids (1–56) were necessary for the nuclear distribution of APOBEC-1, but this region did not contain a functional nuclear localization signal (NLS). However, we identified a 24-amino acid domain in the C terminus of APOBEC-1 with characteristics of a cytoplasmic retention signal (CRS) or a nuclear export signal (NES). These data suggest, therefore, that the nuclear import of APOBEC-1 may not be mediated by a positive NLS; rather, it may be achieved by overcoming the effect of a CRS/NES. We also demonstrated that the nuclear distribution of APOBEC-1 occurred only in cell lines that were capable of editing apoB RNA. We propose that the cellular distribution of APOBEC-1 is determined by multiple domains within this protein, and a nuclear localization of the enzyme may be regulated by cell type-specific factors that render these cells uniquely editing competent.
Resumo:
Cotton rats (Sigmodon hispidus and S. fulviventer) are susceptible to many viruses that infect humans (e.g., poliovirus, respiratory syncytial virus, influenza virus, adenovirus, and parainfluenza virus) and have been influential in developing therapeutic clinical intervention strategies for many viral infections of man. This study set out to determine whether cotton rats are susceptible to infection with HIV type 1 (HIV-1). Results indicate that HIV-1 does infect the cotton rat and S. fulviventer is more susceptible than S. hispidus. The virus was passaged from animal to animal for a total of three serial passages; but HIV replicated poorly in vivo, was only detectable as proviral DNA, and never exceeded one provirus per 1.8 × 105 cotton rat peripheral blood mononuclear cells. Infection induced a distinct and characteristic anti-HIV antibody response that, in some animals, included neutralizing antibodies, recognized all of the major HIV-1 antigens and the antibodies lasted out to 52 wk post-infection. Neonate S. fulviventer were not more susceptible to infection than adults. In vitro culture studies produced indirect evidence of viral replication by detection of viral gag gene RNA in reverse transcriptase–PCR assays on viral culture supernatants. Collectively, these results indicate that HIV-1 can replicate in a nontransgenic rodent and that this system may have potential as an animal model for HIV-1 infection if viral replication rates can be improved in vivo.