969 resultados para Hammerstein equation
Resumo:
Objectives: Because there is scientific evidence that an appropriate intake of dietary fibre should be part of a healthy diet, given its importance in promoting health, the present study aimed to develop and validate an instrument to evaluate the knowledge of the general population about dietary fibres. Study design: The present study was a cross sectional study. Methods: The methodological study of psychometric validation was conducted with 6010 participants, residing in ten countries from 3 continents. The instrument is a questionnaire of self-response, aimed at collecting information on knowledge about food fibres. For exploratory factor analysis (EFA) was chosen the analysis of the main components using varimax orthogonal rotation and eigenvalues greater than 1. In confirmatory factor analysis by structural equation modelling (SEM) was considered the covariance matrix and adopted the Maximum Likelihood Estimation algorithm for parameter estimation. Results: Exploratory factor analysis retained two factors. The first was called Dietary Fibre and Promotion of Health (DFPH) and included 7 questions that explained 33.94 % of total variance ( = 0.852). The second was named Sources of Dietary Fibre (SDF) and included 4 questions that explained 22.46% of total variance ( = 0.786). The model was tested by SEM giving a final solution with four questions in each factor. This model showed a very good fit in practically all the indexes considered, except for the ratio 2/df. The values of average variance extracted (0.458 and 0.483) demonstrate the existence of convergent validity; the results also prove the existence of discriminant validity of the factors (r2 = 0.028) and finally good internal consistency was confirmed by the values of composite reliability (0.854 and 0.787). Conclusions: This study allowed validating the KADF scale, increasing the degree of confidence in the information obtained through this instrument in this and in future studies.
Resumo:
The development of accurate modeling techniques for nanoscale thermal transport is an active area of research. Modern day nanoscale devices have length scales of tens of nanometers and are prone to overheating, which reduces device performance and lifetime. Therefore, accurate temperature profiles are needed to predict the reliability of nanoscale devices. The majority of models that appear in the literature obtain temperature profiles through the solution of the Boltzmann transport equation (BTE). These models often make simplifying assumptions about the nature of the quantized energy carriers (phonons). Additionally, most previous work has focused on simulation of planar two dimensional structures. This thesis presents a method which captures the full anisotropy of the Brillouin zone within a three dimensional solution to the BTE. The anisotropy of the Brillouin zone is captured by solving the BTE for all vibrational modes allowed by the Born Von-Karman boundary conditions.
Resumo:
A parameterization of mesoscale eddy fluxes in the ocean should be consistent with the fact that the ocean interior is nearly adiabatic. Gent and McWilliams have described a framework in which this can be approximated in L-coordinate primitive equation models by incorporating the effects of eddies on the buoyancy field through an eddy-induced velocity. It is also natural to base a parameterization on the simple picture of the mixing of potential vorticity in the interior and the mixing of buoyancy at the surface. The authors discuss the various constraints imposed by these two requirements and attempt to clarify the appropriate boundary conditions on the eddy-induced velocities at the surface. Quasigeostrophic theory is used as a guide to the simplest way of satisfying these constraints.
Resumo:
Neste artigo faz-se uma análise das características distributivas do processo Kaldor-Pasinetti, assumindo-se que o setor governamental incorre em persistentes déficits que podem ser financiados através de diferentes instrumentos, como a emissão de títulos e de moeda. Através dessa abordagem é possível estudar como a atividade governamental afeta a distribuição de renda entre capitalistas e trabalhadores e assim obter generalizações do Teorema de Cambridge em que versões anteriores como as de Steedman (1972), Pasinetti (1989), Dalziel (1991) e Faria (2000) surgem como casos particulares. _________________________________________________________________________________ ABSTRACT
Resumo:
We show that a set of fundamental solutions to the parabolic heat equation, with each element in the set corresponding to a point source located on a given surface with the number of source points being dense on this surface, constitute a linearly independent and dense set with respect to the standard inner product of square integrable functions, both on lateral- and time-boundaries. This result leads naturally to a method of numerically approximating solutions to the parabolic heat equation denoted a method of fundamental solutions (MFS). A discussion around convergence of such an approximation is included.
Resumo:
We consider a system described by the linear heat equation with adiabatic boundary conditions which is perturbed periodicaly. This perturbation is nonlinear and is characterized by a one-parameter family of quadratic maps. The system, depending on the parameters, presents very complex behaviour. We introduce a symbolic framework to analyze the system and resume its most important features.
Resumo:
We propose an alternative crack propagation algo- rithm which effectively circumvents the variable transfer procedure adopted with classical mesh adaptation algo- rithms. The present alternative consists of two stages: a mesh-creation stage where a local damage model is employed with the objective of defining a crack-conforming mesh and a subsequent analysis stage with a localization limiter in the form of a modified screened Poisson equation which is exempt of crack path calculations. In the second stage, the crack naturally occurs within the refined region. A staggered scheme for standard equilibrium and screened Poisson equa- tions is used in this second stage. Element subdivision is based on edge split operations using a constitutive quantity (damage). To assess the robustness and accuracy of this algo- rithm, we use five quasi-brittle benchmarks, all successfully solved.
Resumo:
We propose a crack propagation algorithm which is independent of particular constitutive laws and specific element technology. It consists of a localization limiter in the form of the screened Poisson equation with local mesh refinement. This combination allows the cap- turing of strain localization with good resolution, even in the absence of a sufficiently fine initial mesh. In addition, crack paths are implicitly defined from the localized region, cir- cumventing the need for a specific direction criterion. Observed phenomena such as mul- tiple crack growth and shielding emerge naturally from the algorithm. In contrast with alternative regularization algorithms, curved cracks are correctly represented. A staggered scheme for standard equilibrium and screened equations is used. Element subdivision is based on edge split operations using a given constitutive quantity (either damage or void fraction). To assess the robustness and accuracy of this algorithm, we use both quasi-brittle benchmarks and ductile tests.