998 resultados para Ground vibration
Resumo:
Purpose: Because walking is highly recommended for prevention and treatment of obesity and some of its biomechanical aspects are not clearly understood for overweight people, we compared the absolute and normalized ground reaction forces (GRF), plantar pressures, and temporal parameters of normal-weight and overweight participants during overground walking. Method: A force plate and an in-shoe pressure system were used to record GRF, plantar pressures (foot divided in 10 regions), and temporal parameters of 17 overweight adults and 17 gender-matched normal-weight adults while walking. Results: With high effect sizes, the overweight participants showed higher absolute medial-lateral and vertical GRF and pressure peaks in the central rearfoot, lateral midfoot, and lateral and central forefoot. However, analyzing normalized (scaled to body weight) data, the overweight participants showed lower vertical and anterior-posterior GRF and lower pressure peaks in the medial rearfoot and hallux, but the lateral forefoot peaks continued to be greater compared with normal-weight participants. Time of occurrence of medial-lateral GRF and pressure peaks in the midfoot occurred later in overweight individuals. Conclusions: The overweight participants adapted their gait pattern to minimize the consequences of the higher vertical and propulsive GRF in their musculoskeletal system. However, they were not able to improve their balance as indicated by medial-lateral GRF. The overweight participants showed higher absolute pressure peaks in 4 out of 10 foot regions. Furthermore, the normalized data suggest that the lateral forefoot in overweight adults was loaded more than the proportion of their extra weight, while the hallux and medial rearfoot were seemingly protected.
Resumo:
The objective of this paper is to analyze the forearm muscular contraction levels associated to the use of anti-vibration gloves, by comparing the contraction levels with gloves and without gloves. Two different vibration tools were used in a simulated work environment: (1) A compact Duty Multi-Cutter Bosch and (2) and a Percussion Drill with a drill bit Ø20 mm. Standard operations were performed by each subject in the following materials: (1) Performing cross- sectional cuts in 80x40 mm pine section and (2) performing 20 mm diameter holes in a concrete slab 2 x 2 m, 70 mm thick. The forearm contraction level were measured by surface electromyography in four different muscles: Flexor Digitorum Superficialis (FDS), Flexor Carpi Ulnaris (FCU), Extensor Carpi Radialis Longus (ECRL) e Extensor Carpi Ulnaris (ECU). For the flexor muscles (FDS, FCU), an increase tendency in muscular contraction was observed when the operations are performed without gloves (2-5% MVE increase in the FDS and 3-9% MVE increase in the FCU). For the extensor muscles ECU a decrease tendency in muscular contraction was observed when the operations are performed without gloves (1-10% MVE decrease). Any tendency was found in the ECRL muscle. ECU was the muscle with the highest contraction level for 79% and 71% of the operators, during the operations respectively with the multi-cutter (P50= 27-30%MVE) and with the percussion drill (P50=46-55%MVE). As a final conclusion from this study, anti- vibration gloves may increase the forearm fatigue in the posterior region of the forearm (ECU muscle) during operations with the mentioned tools
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
The objective of this contribution is to extend the models of cellular/composite material design to nonlinear material behaviour and apply them for design of materials for passive vibration control. As a first step a computational tool allowing determination of optimised one-dimensional isolator behaviour was developed. This model can serve as a representation for idealised macroscopic behaviour. Optimal isolator behaviour to a given set of loads is obtained by generic probabilistic metaalgorithm, simulated annealing. Cost functional involves minimization of maximum response amplitude in a set of predefined time intervals and maximization of total energy absorbed in the first loop. Dependence of the global optimum on several combinations of leading parameters of the simulated annealing procedure, like neighbourhood definition and annealing schedule, is also studied and analyzed. Obtained results facilitate the design of elastomeric cellular materials with improved behaviour in terms of dynamic stiffness for passive vibration control.
Resumo:
Trabalho de Projeto para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Estruturas
Resumo:
The aim of this contribution is to extend the techniques of composite materials design to non-linear material behaviour and apply it for design of new materials for passive vibration control. As a first step a computational tool allowing determination of macroscopic optimized one-dimensional isolator behaviour was developed. Voigt, Maxwell, standard and more complex material models can be implemented. Objective function considers minimization of the initial reaction and/or displacement peak as well as minimization of the steady-state amplitude of reaction and/or displacement. The complex stiffness approach is used to formulate the governing equations in an efficient way. Material stiffness parameters are assumed as non-linear functions of the displacement. The numerical solution is performed in the complex space. The steady-state solution in the complex space is obtained by an iterative process based on the shooting method which imposes the conditions of periodicity with respect to the known value of the period. Extension of the shooting method to the complex space is presented and verified. Non-linear behaviour of material parameters is then optimized by generic probabilistic meta-algorithm, simulated annealing. Dependence of the global optimum on several combinations of leading parameters of the simulated annealing procedure, like neighbourhood definition and annealing schedule, is also studied and analyzed. Procedure is programmed in MATLAB environment.
Resumo:
13th International Conference on Autonomous Robot Systems (Robotica), 2013
Resumo:
This work presents an automatic calibration method for a vision based external underwater ground-truth positioning system. These systems are a relevant tool in benchmarking and assessing the quality of research in underwater robotics applications. A stereo vision system can in suitable environments such as test tanks or in clear water conditions provide accurate position with low cost and flexible operation. In this work we present a two step extrinsic camera parameter calibration procedure in order to reduce the setup time and provide accurate results. The proposed method uses a planar homography decomposition in order to determine the relative camera poses and the determination of vanishing points of detected lines in the image to obtain the global pose of the stereo rig in the reference frame. This method was applied to our external vision based ground-truth at the INESC TEC/Robotics test tank. Results are presented in comparison with an precise calibration performed using points obtained from an accurate 3D LIDAR modelling of the environment.
Resumo:
Biomechanical gait parameters—ground reaction forces (GRFs) and plantar pressures—during load carriage of young adults were compared at a low gait cadence and a high gait cadence. Differences between load carriage and normal walking during both gait cadences were also assessed. A force plate and an in-shoe plantar pressure system were used to assess 60 adults while they were walking either normally (unloaded condition) or wearing a backpack (loaded condition) at low (70 steps per minute) and high gait cadences (120 steps per minute). GRF and plantar pressure peaks were scaled to body weight (or body weight plus backpack weight). With medium to high effect sizes we found greater anterior-posterior and vertical GRFs and greater plantar pressure peaks in the rearfoot, forefoot and hallux when the participants walked carrying a backpack at high gait cadences compared to walking at low gait cadences. Differences between loaded and unloaded conditions in both gait cadences were also observed.
Resumo:
When concrete deterioration begins to occur in highway pavement, repairs become necessary to assure the rider safety, extend its useful life and restore its riding qualities. One rehabilitation technique used to restore the pavement to acceptable highway standards is to apply a thin portland cement concrete (PCC) overlay to the existing pavement. First, any necessary repairs are made to the existing pavement, the surface is then prepared, and the PCC overlay is applied. Brice Petrides-Donohue, Inc. (Donohue) was retained by the Iowa Department of Transportation (IDOT) to evaluate the present condition with respect to debonding of the PCC overlay at fifteen sites on Interstate 80 and State Highway 141 throughout the State of Iowa. This was accomplished by conducting an infrared thermographic and ground penetrating radar survey of these sites which were selected by the Iowa Department of Transportation. The fifteen selected sites were all two lanes wide and one-tenth of a mile long, for a total of three lane miles or 190,080 square feet. The selected sites are as follows: On Interstate 80 Eastbound, from milepost 35.25 to 35.35, milepost 36.00 to 36.10, milepost 37.00 to 37.10, milepost 38.00 to 38.10 and milepost 39.00 to 39.10, on State Highway 141 from milepost 134.00 to 134.10, milepost 134.90 to milepost 135.00, milepost 135.90 to 136.00, milepost 137.00 to 137.10 and milepost 138.00 to 138.10, and on Interstate 80 Westbound from milepost 184.00 to 184.10, milepost 185.00 to 185.10, milepost 186.00 to 186.10, milepost 187.00 to 187.10, and from milepost 188.00 to 188.10.
Resumo:
A new method for sampling the exact (within the nodal error) ground state distribution and nondiflPerential properties of multielectron systems is developed and applied to firstrow atoms. Calculated properties are the distribution moments and the electronic density at the nucleus (the 6 operator). For this purpose, new simple trial functions are developed and optimized. First, using Hydrogen as a test case, we demonstrate the accuracy of our algorithm and its sensitivity to error in the trial function. Applications to first row atoms are then described. We obtain results which are more satisfactory than the ones obtained previously using Monte Carlo methods, despite the relative crudeness of our trial functions. Also, a comparison is made with results of highly accurate post-Hartree Fock calculations, thereby illuminating the nodal error in our estimates. Taking into account the CPU time spent, our results, particularly for the 8 operator, have a relatively large variance. Several ways of improving the eflSciency together with some extensions of the algorithm are suggested.
Resumo:
Strategies designed to improve educational systems have created tensions in school personnel as they struggle to respond to competing demands of ongoing change within their daily realities. The purpose of this case study was to investigate how teachers and administrators in one elementary school made sense ofthese tensions and to explore the factors that constrained or shaped their responses. A constructive interpretative case study using a grounded theory approach was used. Qualitative data were collected through document analysis, semi-structured interviews, and participant observation. In-depth information about teachers' and administrators' experiences and a contextual understanding oftension was generated from inductive analysis of the data. The study found that tension was a phenomenon situated in the context in which it arose. A contextual understanding of tension revealed the interactions between the institutional, personal, and emotional domains that continually shaped individual and group behavioural responses. This contextual understanding of tension provided the means to reinterpret resistance to change. It also helped to show how teachers and administrators reconstructed identities and made sense in context.. Of particular note was the crucial nature of the conditions under which teachers and adlninistrators shaped meaning and understood change. This study sheds light on the contextual intricacies of tension that may help leaders with the complex design and implementation of educational change..
Resumo:
The infrared and the Raman spectra of eSelF has been obtained for the first time and has been analysed to give the in-plane normal vibrational frequencies of the molecule, in the ground state. A normal co-ordinate analysis has been carried out for the molecules CSF2, CSClF and eSel 2 using a Urey-Bradley type of potential function and the elements of the [L] matrix elements, the distribution of the potential energy in Urey-Bradley space, and the displacement vector diagrams for the normal modes of vibration for these molecules, have been obtained. The bond for~e constants obtained through the normal co-ordinate analysis, have given some interesting results. The stretching force constant, Kes ' varies markedly with halogen substitution and the force constants KeF and Keel also vary with substitution.