969 resultados para Graph API


Relevância:

10.00% 10.00%

Publicador:

Resumo:

La constant evolució que estan experimentant les tecnologies d’informació fa que cada vegada els programes es vagin quedant més obsolets, a la vegada que cada vegada són més els programes nous, amb noves funcionalitats, nous avantatges, llicències gratuïtes, etc. El Consorci del Parc de Collserola es veu amb la necessitat d’investigar en aquests nous camps que van sorgint per anar actualitzant-se. La nostra aplicació pretén ser un model de migració i desenvolupament d’una aplicació ja existent, que gestiona l’arxiu fotogràfic del parc de Collserola, a una aplicació de programari lliure que sigui d’accés a tot el públic via Internet, capaç de gestionar el catàleg de fotografies a la vegada que s’incorporen noves funcionalitats a l’aplicació. Pel desenvolupament de l’aplicació es farà servir Microsoft Visual Web Developer 2008 Express Edition afegint-hi una API de Google Maps, tots dos software de codi lliure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El present projecte ha consistit en la creació del SIA, Sistema d’Informació d’Anivellacions. Un SIG integrat que ha estat creat per emmagatzemar, gestionar i consultar les dades d’anivellació topogràfica i GPS. El projecte ha comportat tres grans fases: en primer terme s’ha creat una BBDD en Oracle i, posteriorment, amb la finalitat de facilitar la inserció de dades, es crea una aplicació que permet la ràpida inclusió a la BBDD de les noves mesures que arribin a l’IGC. Finalment, es crea un visualitzador amb tecnologia ESRI, més concretament la nova API de Flex que ESRI ha desenvolupat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamical analysis of large biological regulatory networks requires the development of scalable methods for mathematical modeling. Following the approach initially introduced by Thomas, we formalize the interactions between the components of a network in terms of discrete variables, functions, and parameters. Model simulations result in directed graphs, called state transition graphs. We are particularly interested in reachability properties and asymptotic behaviors, which correspond to terminal strongly connected components (or "attractors") in the state transition graph. A well-known problem is the exponential increase of the size of state transition graphs with the number of network components, in particular when using the biologically realistic asynchronous updating assumption. To address this problem, we have developed several complementary methods enabling the analysis of the behavior of large and complex logical models: (i) the definition of transition priority classes to simplify the dynamics; (ii) a model reduction method preserving essential dynamical properties, (iii) a novel algorithm to compact state transition graphs and directly generate compressed representations, emphasizing relevant transient and asymptotic dynamical properties. The power of an approach combining these different methods is demonstrated by applying them to a recent multilevel logical model for the network controlling CD4+ T helper cell response to antigen presentation and to a dozen cytokines. This model accounts for the differentiation of canonical Th1 and Th2 lymphocytes, as well as of inflammatory Th17 and regulatory T cells, along with many hybrid subtypes. All these methods have been implemented into the software GINsim, which enables the definition, the analysis, and the simulation of logical regulatory graphs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabajo desarrolla el proceso de diseño e implementación de una interfaz web que permite la exploración en detalle de las relaciones entre genomas completos. La interfaz permite la comparación simultánea de nueve genomas, representando en cada gráfica las relaciones entre cada par de genomas junto los genes identificados de cada uno de ellos. Es capaz de trabajar con genomas del dominio Eukaryota y se adapta a la capacidad de cómputo de la máquina cliente. La información representada son MUMs (Maximal Unique Matching, secuencia máxima y única encontrada en ambos genomas) y SuperMUMs (agrupación de MUMs mediante Approximate String Matching). Los datos son previamente calculados y accesibles desde un servidor web.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

From toddler to late teenager, the macroscopic pattern of axonal projections in the human brain remains largely unchanged while undergoing dramatic functional modifications that lead to network refinement. These functional modifications are mediated by increasing myelination and changes in axonal diameter and synaptic density, as well as changes in neurochemical mediators. Here we explore the contribution of white matter maturation to the development of connectivity between ages 2 and 18 y using high b-value diffusion MRI tractography and connectivity analysis. We measured changes in connection efficacy as the inverse of the average diffusivity along a fiber tract. We observed significant refinement in specific metrics of network topology, including a significant increase in node strength and efficiency along with a decrease in clustering. Major structural modules and hubs were in place by 2 y of age, and they continued to strengthen their profile during subsequent development. Recording resting-state functional MRI from a subset of subjects, we confirmed a positive correlation between structural and functional connectivity, and in addition observed that this relationship strengthened with age. Continuously increasing integration and decreasing segregation of structural connectivity with age suggests that network refinement mediated by white matter maturation promotes increased global efficiency. In addition, the strengthening of the correlation between structural and functional connectivity with age suggests that white matter connectivity in combination with other factors, such as differential modulation of axonal diameter and myelin thickness, that are partially captured by inverse average diffusivity, play an increasingly important role in creating brain-wide coherence and synchrony.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An ab initio structure prediction approach adapted to the peptide-major histocompatibility complex (MHC) class I system is presented. Based on structure comparisons of a large set of peptide-MHC class I complexes, a molecular dynamics protocol is proposed using simulated annealing (SA) cycles to sample the conformational space of the peptide in its fixed MHC environment. A set of 14 peptide-human leukocyte antigen (HLA) A0201 and 27 peptide-non-HLA A0201 complexes for which X-ray structures are available is used to test the accuracy of the prediction method. For each complex, 1000 peptide conformers are obtained from the SA sampling. A graph theory clustering algorithm based on heavy atom root-mean-square deviation (RMSD) values is applied to the sampled conformers. The clusters are ranked using cluster size, mean effective or conformational free energies, with solvation free energies computed using Generalized Born MV 2 (GB-MV2) and Poisson-Boltzmann (PB) continuum models. The final conformation is chosen as the center of the best-ranked cluster. With conformational free energies, the overall prediction success is 83% using a 1.00 Angstroms crystal RMSD criterion for main-chain atoms, and 76% using a 1.50 Angstroms RMSD criterion for heavy atoms. The prediction success is even higher for the set of 14 peptide-HLA A0201 complexes: 100% of the peptides have main-chain RMSD values < or =1.00 Angstroms and 93% of the peptides have heavy atom RMSD values < or =1.50 Angstroms. This structure prediction method can be applied to complexes of natural or modified antigenic peptides in their MHC environment with the aim to perform rational structure-based optimizations of tumor vaccines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motivation. The study of human brain development in itsearly stage is today possible thanks to in vivo fetalmagnetic resonance imaging (MRI) techniques. Aquantitative analysis of fetal cortical surfacerepresents a new approach which can be used as a markerof the cerebral maturation (as gyration) and also forstudying central nervous system pathologies [1]. However,this quantitative approach is a major challenge forseveral reasons. First, movement of the fetus inside theamniotic cavity requires very fast MRI sequences tominimize motion artifacts, resulting in a poor spatialresolution and/or lower SNR. Second, due to the ongoingmyelination and cortical maturation, the appearance ofthe developing brain differs very much from thehomogenous tissue types found in adults. Third, due tolow resolution, fetal MR images considerably suffer ofpartial volume (PV) effect, sometimes in large areas.Today extensive efforts are made to deal with thereconstruction of high resolution 3D fetal volumes[2,3,4] to cope with intra-volume motion and low SNR.However, few studies exist related to the automatedsegmentation of MR fetal imaging. [5] and [6] work on thesegmentation of specific areas of the fetal brain such asposterior fossa, brainstem or germinal matrix. Firstattempt for automated brain tissue segmentation has beenpresented in [7] and in our previous work [8]. Bothmethods apply the Expectation-Maximization Markov RandomField (EM-MRF) framework but contrary to [7] we do notneed from any anatomical atlas prior. Data set &Methods. Prenatal MR imaging was performed with a 1-Tsystem (GE Medical Systems, Milwaukee) using single shotfast spin echo (ssFSE) sequences (TR 7000 ms, TE 180 ms,FOV 40 x 40 cm, slice thickness 5.4mm, in plane spatialresolution 1.09mm). Each fetus has 6 axial volumes(around 15 slices per volume), each of them acquired inabout 1 min. Each volume is shifted by 1 mm with respectto the previous one. Gestational age (GA) ranges from 29to 32 weeks. Mother is under sedation. Each volume ismanually segmented to extract fetal brain fromsurrounding maternal tissues. Then, in-homogeneityintensity correction is performed using [9] and linearintensity normalization is performed to have intensityvalues that range from 0 to 255. Note that due tointra-tissue variability of developing brain someintensity variability still remains. For each fetus, ahigh spatial resolution image of isotropic voxel size of1.09 mm is created applying [2] and using B-splines forthe scattered data interpolation [10] (see Fig. 1). Then,basal ganglia (BS) segmentation is performed on thissuper reconstructed volume. Active contour framework witha Level Set (LS) implementation is used. Our LS follows aslightly different formulation from well-known Chan-Vese[11] formulation. In our case, the LS evolves forcing themean of the inside of the curve to be the mean intensityof basal ganglia. Moreover, we add local spatial priorthrough a probabilistic map created by fitting anellipsoid onto the basal ganglia region. Some userinteraction is needed to set the mean intensity of BG(green dots in Fig. 2) and the initial fitting points forthe probabilistic prior map (blue points in Fig. 2). Oncebasal ganglia are removed from the image, brain tissuesegmentation is performed as described in [8]. Results.The case study presented here has 29 weeks of GA. Thehigh resolution reconstructed volume is presented in Fig.1. The steps of BG segmentation are shown in Fig. 2.Overlap in comparison with manual segmentation isquantified by the Dice similarity index (DSI) equal to0.829 (values above 0.7 are considered a very goodagreement). Such BG segmentation has been applied on 3other subjects ranging for 29 to 32 GA and the DSI hasbeen of 0.856, 0.794 and 0.785. Our segmentation of theinner (red and blue contours) and outer cortical surface(green contour) is presented in Fig. 3. Finally, torefine the results we include our WM segmentation in theFreesurfer software [12] and some manual corrections toobtain Fig.4. Discussion. Precise cortical surfaceextraction of fetal brain is needed for quantitativestudies of early human brain development. Our workcombines the well known statistical classificationframework with the active contour segmentation forcentral gray mater extraction. A main advantage of thepresented procedure for fetal brain surface extraction isthat we do not include any spatial prior coming fromanatomical atlases. The results presented here arepreliminary but promising. Our efforts are now in testingsuch approach on a wider range of gestational ages thatwe will include in the final version of this work andstudying as well its generalization to different scannersand different type of MRI sequences. References. [1]Guibaud, Prenatal Diagnosis 29(4) (2009). [2] Rousseau,Acad. Rad. 13(9), 2006, [3] Jiang, IEEE TMI 2007. [4]Warfield IADB, MICCAI 2009. [5] Claude, IEEE Trans. Bio.Eng. 51(4) (2004). [6] Habas, MICCAI (Pt. 1) 2008. [7]Bertelsen, ISMRM 2009 [8] Bach Cuadra, IADB, MICCAI 2009.[9] Styner, IEEE TMI 19(39 (2000). [10] Lee, IEEE Trans.Visual. And Comp. Graph. 3(3), 1997, [11] Chan, IEEETrans. Img. Proc, 10(2), 2001 [12] Freesurfer,http://surfer.nmr.mgh.harvard.edu.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultrasound segmentation is a challenging problem due to the inherent speckle and some artifacts like shadows, attenuation and signal dropout. Existing methods need to include strong priors like shape priors or analytical intensity models to succeed in the segmentation. However, such priors tend to limit these methods to a specific target or imaging settings, and they are not always applicable to pathological cases. This work introduces a semi-supervised segmentation framework for ultrasound imaging that alleviates the limitation of fully automatic segmentation, that is, it is applicable to any kind of target and imaging settings. Our methodology uses a graph of image patches to represent the ultrasound image and user-assisted initialization with labels, which acts as soft priors. The segmentation problem is formulated as a continuous minimum cut problem and solved with an efficient optimization algorithm. We validate our segmentation framework on clinical ultrasound imaging (prostate, fetus, and tumors of the liver and eye). We obtain high similarity agreement with the ground truth provided by medical expert delineations in all applications (94% DICE values in average) and the proposed algorithm performs favorably with the literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este documento refleja el estudio de investigación para la detección de factores que afectan al rendimiento en entornos multicore. Debido a la gran diversidad de arquitecturas multicore se ha definido un marco de trabajo, que consiste en la adopción de una arquitectura específica, un modelo de programación basado en paralelismo de datos, y aplicaciones del tipo Single Program Multiple Data. Una vez definido el marco de trabajo, se han evaluado los factores de rendimiento con especial atención al modelo de programación. Por este motivo, se ha analizado la librería de threads y la API OpenMP para detectar aquellas funciones sensibles de ser sintonizadas al permitir un comportamiento adaptativo de la aplicación al entorno, y que dependiendo de su adecuada utilización han de mejorar el rendimiento de la aplicación.