975 resultados para Glial fibrillary acidic protein
Resumo:
In the present study, the synthesis and characterization of a series of N-methylimidazole-based thiourea and selenourea derivatives are described. The new compounds were also studied for their ability to inhibit peroxynitrite (PN)- and peroxidase-mediated nitration of protein tyrosine residues. It has been observed that the selenourea derivatives are more efficient than the thiourea-based compounds in the inhibition of protein nitration. The higher activity of selenoureas as compared to that of the corresponding thioureas can be ascribed to the zwitterionic nature of the selenourea moiety. Single crystal X-ray diffraction studies on some of the thiourea and selenourea derivatives reveal that the C S bonds in thioureas possess more of double bond character than the C=Se bonds in the corresponding selenoureas. Therefore, the selenium compounds can react with PN or hydrogen peroxide much faster than their sulfur analogues. The reactions of thiourea and selenourea derivatives with PN or hydrogen peroxide produce the corresponding sulfinic or seleninic acid derivatives, which upon elimination of sulfurous/selenous acids produce the corresponding N-methylimdazole derivatives.
Resumo:
HCV NS3 protein plays a central role in viral polyprotein processing and RNA replication. We demonstrate that the NS3 protease (NS3(pro)) domain alone can specifically bind to HCV-IRES RNA, predominantly in the SLIV region. The cleavage activity of the NS3 protease domain is reduced upon HCV-RNA binding. More importantly, NS3(pro) binding to the SLIV hinders the interaction of La protein, a cellular IRES-trans acting factor required for HCV IRES-mediated translation, resulting in inhibition of HCV-IRES activity. Although overexpression of both NS3(pro) as well as the full length NS3 protein decreased the level of HCV IRES mediated translation, replication of HCV replicon RNA was enhanced significantly. These observations suggest that the NS3(pro) binding to HCV IRES reduces translation in favor of RNA replication. The competition between the host factor (La) and the viral protein (NS3) for binding to HCV IRES might regulate the molecular switch from translation to replication of HCV.
Resumo:
Primary microcephaly is an autosomal recessive disorder characterized by smaller than normal brain size and mental retardation. It is genetically heterogeneous with seven loci: MCPH1-MCPH7. We have previously reported genetic analysis of 35 families, including the identification of the MCPH7 gene STIL. Of the 35 families, three families showed linkage to the MCPH2 locus. Recent whole-exome sequencing studies have shown that the WDR62 gene, located in the MCPH2 candidate region, is mutated in patients with severe brain malformations. We therefore sequenced the WDR62 gene in our MCPH2 families and identified two novel homozygous protein truncating mutations in two families. Affected individuals in the two families had pachygyria, microlissencephaly, band heterotopias, gyral thickening, and dysplastic cortex. Using immunofluorescence study, we showed that, as with other MCPH proteins, WDR62 localizes to centrosomes in A549, HepG2, and HaCaT cells. In addition, WDR62 was also localized to nucleoli. Bioinformatics analysis predicted two overlapping nuclear localization signals and multiple WD-40 repeats in WDR62. Two other groups have also recently identified WDR62 mutations in MCPH2 families. Our results therefore add further evidence that WDR62 is the MCPH2 gene. The present findings will be helpful in genetic diagnosis of patients linked to the MCPH2 locus.
Resumo:
Innate immunity recognizes and resists various pathogens; however, the mechanisms regulating pathogen versus non-pathogen discrimination are still imprecisely understood. Here, we demonstrate that pathogen-specific activation of TLR2 upon infection with Mycobacterium bovis BCG, in comparison with other pathogenic microbes, including Salmonella typhimurium and Staphylococcus aureus, programs macrophages for robust up-regulation of signaling cohorts of Wnt-beta-catenin signaling. Signaling perturbations or genetic approaches suggest that infection-mediated stimulation of Wnt-beta-catenin is vital for activation of Notch1 signaling. Interestingly, inducible NOS (iNOS) activity is pivotal for TLR2-mediated activation of Wnt-beta-catenin signaling as iNOS(-/-) mice demonstrated compromised ability to trigger activation of Wnt-beta-catenin signaling as well as Notch1-mediated cellular responses. Intriguingly, TLR2-driven integration of iNOS/NO, Wnt-beta-catenin, and Notch1 signaling contributes to its capacity to regulate the battery of genes associated with T(Reg) cell lineage commitment. These findings reveal a role for differential stimulation of TLR2 in deciding the strength of Wnt-beta-catenin signaling, which together with signals from Notch1 contributes toward the modulation of a defined set of effector functions in macrophages and thus establishes a conceptual framework for the development of novel therapeutics.
Resumo:
The coordinated activity of protein tyrosine phosphatases (PTPs) is crucial for the initiation, modulation, and termination of diverse cellular processes. The catalytic activity of this protein depends on a nucleophilic cysteine at the active site that mediates the hydrolysis of the incoming phosphotyrosine substrate. While the role of conserved residues in the catalytic mechanism of PTPs has been extensively examined, the diversity in the mechanisms of substrate recognition and modulation of catalytic activity suggests that other, less conserved sequence and structural features could contribute to this process. Here we describe the crystal structures of Drosophila melanogaster PTP10D in the apo form as well as in a complex with a substrate peptide and an inhibitor. These studies reveal the role of aromatic ring stacking interactions at the boundary of the active site of PTPs in mediating substrate recruitment. We note that phenylalanine 76, of the so-called KNRY loop, is crucial for orienting the phosphotyrosine residue toward the nucleophilic cysteine. Mutation of phenylalanine 76 to leucine results in a 60-fold decrease in the catalytic efficiency of the enzyme. Fluorescence measurements with a competitive inhibitor, p-nitrocatechol sulfate, suggest that Phe76 also influences the formation of the enzyme-substrate intermediate. The structural and biochemical data for PTP10D thus highlight the role of relatively less conserved residues in PTP domains in both substrate recruitment and modulation of reaction kinetics.
Resumo:
Groundnut bud necrosis virus belongs to the genus Tospovirus, infects a wide range of crop plants and causes severe losses. To understand the role of the nucleocapsid protein in the viral life cycle, the protein was overexpressed in E. coli and purified by Ni-NTA chromatography. The purified N protein was well folded and was predominantly alpha-helical. Deletion analysis revealed that the C-terminal unfolded region of the N protein was involved in RNA binding. Furthermore, the N protein could be phosphorylated in vitro by Nicotiana benthamiana plant sap and by purified recombinant kinases such as protein kinase CK2 and calcium-dependent protein kinase. This is the first report of phoshphorylation of a nucleocapsid protein in the family Bunyaviridae. The possible implications of the present findings for the viral life cycle are discussed.
Resumo:
Mycobacterium leprae is closely related to Mycobacterium tuberculosis, yet causes a very different illness. Detailed genomic comparison between these two species of mycobacteria reveals that the decaying M. leprae genome contains less than half of the M. tuberculosis functional genes. The reduction of genome size and accumulation of pseudogenes in the M. leprae genome is thought to result from multiple recombination events between related repetitive sequences, which provided the impetus to investigate the recombination-like activities of RecA protein. In this study, we have cloned, over-expressed and purified M. leprae RecA and compared its activities with that of M. tuberculosis RecA. Both proteins, despite being 91% identical at the amino acid level, exhibit strikingly different binding profiles for single-stranded DNA with varying GC contents, in the ability to catalyze the formation of D-loops and to promote DNA strand exchange. The kinetics and the extent of single-stranded DNA-dependent ATPase and coprotease activities were nearly equivalent between these two recombinases. However, the degree of inhibition exerted by a range of ATP:ADP ratios was greater on strand exchange promoted by M. leprae RecA compared to its M. tuberculosis counterpart. Taken together, our results provide insights into the mechanistic aspects of homologous recombination and coprotease activity promoted by M. lepare RecA, and further suggests that it differs from the M. tuberculosis counterpart. These results are consistent with an emerging concept of DNA-sequence influenced structural differences in RecA nucleoprotein filaments and how these differences reflect on the multiple activities associated with RecA protein. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We have identified a methanol- and biotin-starvation-inducible zinc finger protein named ROP [repressor of phosphoenolpyruvate carboxykinase (PEPCK)] in the methylotrophic yeast Pichia pastoris. When P. pastoris strain GS115 (wild-type, WT) is cultured in biotin-deficient, glucose-ammonium (Bio(-)) medium, growth is suppressed due to the inhibition of anaplerotic synthesis of oxaloacetate, catalysed by the biotin-dependent enzyme pyruvate carboxylase (PC). Deletion of ROP results in a strain (Delta ROP) that can grow under biotin-deficient conditions due to derepression of a biotin- and PC-independent pathway of anaplerotic synthesis of oxaloacetate. Northern analysis as well as microarray expression profiling of RNA isolated from WT and Delta ROP strains cultured in Bio(-) medium indicate that expression of the phosphoenolpyruvate carboxykinase gene (PEPCK) is induced in Delta ROP during biotin- or PC-deficiency even under glucose-abundant conditions. There is an excellent correlation between PEPCK expression and growth of Delta ROP in Bio(-) medium, suggesting that ROP-mediated regulation of PEPCK may have a crucial role in the biotin- and PC-independent growth of the Delta ROP strain. To our knowledge, ROP is the first example of a zinc finger transcription factor involved in the catabolite repression of PEPCK in yeast cells cultured under biotin- or PC-deficient and glucose-abundant conditions.
Resumo:
An in-depth understanding of biological processes often requires detailed atomic resolution structures of the molecules involved. However in solution where most of these processes occur the conformation of biomolecules like RNA, DNA and proteins is not static but fluctuates. Routinely used structural techniques like X-ray crystallography, NMR spectroscopy and cryo-electron microscopy have almost always been used to determine the structure of the dominant conformation or obtain an average structure of the biomolecule in solution with very little detailed information regarding the dynamics of these molecules in solution. Over the last few years, NMR based methods have been developed to study the dynamics of these biomolecules in solution in a site-specific manner with the aim of generating structures of the different conformations that these molecules can adopt in solution. One powerful technique is the Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiment, which can be used to detect and characterize protein excited states that are populated for as less as 0.5% of the time with ∼0.5–10 millisecond lifetimes. Due to recent advances in NMR pulse sequences and labeling methodology, it is now possible to determine the structures of these transiently populated excited states with millisecond lifetimes by obtaining accurate chemical shifts, residual dipolar couplings (RDCs) and residual chemical shift anisotropies (RCSAs) of these excited states. In these excited states the dynamics of some methyl containing residues can also be studied.
Resumo:
Different DNA-binding proteins have different interaction modes with DNA. Sequence-specific DNA protein interaction has been mostly associated with regulatory processes inside a cell, and as such extensive studies have been made. Adequate data is also available on nonspecific DNA protein interaction, as an intermediate to protein's search for its cognate partner. Multidomain nonspecific DNA protein interaction involving physical sequestering of DNA has often been implicated to regulate gene expression indirectly. However, data available on this type of interaction is limited. One such interaction is the binding of DNA with mycobacterium DNA binding proteins. We have used the Langmuir-Blodgett technique to evaluate for the first time the kinetics and thermodynamics of Mycobacterium smegmatis Dps 1 binding to DNA. By immobilizing one of the interacting partners, we have shown that, when a kinetic bottleneck is applied, the binding mechanism showed cooperative binding (n = 2.72) at lower temperatures, but the degree of cooperativity gradually reduces (n = 1.38) as the temperature was increased We have also compared the kinetics and thermodynamics of sequence-specific and nonspecific DNA protein interactions under the same set of conditions.
Resumo:
Regulation of NIa-Pro is crucial for polyprotein processing and hence, for successful infection of potyviruses. We have examined two novel mechanisms that could regulate NIa-Pro activity. Firstly, the influence of VPg domain on the proteolytic activity of NIa-Pro was investigated. It was shown that the turnover number of the protease increases when these two domains interact (as: two-fold; trans: seven-fold) with each other. Secondly, the protease activity of NIa-Pro could also be modulated by phosphorylation at Ser129. A mutation of this residue either to aspartate (phosphorylation-mimic) or alanine (phosphorylation-deficient) drastically reduces the protease activity. Based on these observations and molecular modeling studies, we propose that interaction with VPg as well as phosphorylation of Ser129 could relay a signal through Trp143 present at the protein surface to the active site pocket by subtle conformational changes, thus modulating protease activity of NIa-Pro. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Biologically triggered exploding microcapsules were synthesized by layer-by-layer assembly of biopolymers. The microcapsules showed controlled rupturing behaviour upon exposure to a pathologically relevant biomolecule, trypsin. These microcapsules offer significant potential for clinical applications.
Resumo:
In this article, we report the mechanical and biocompatibility properties of injection-molded high-density polyethylene (HDPE) composites reinforced with 40 wt % ceramic filler [hydroxyapatite (HA) and/or Al2O3] and 2 wt % titanate as a coupling agent. The mechanical property measurements revealed that a combination of a maximum tensile strength of 18.7 MPa and a maximum tensile modulus of about 855 MPa could be achieved with the injection-molded HDPE20 wt % HA20 wt % Al2O3 composites. For the same composite composition, the maximum compression strength was determined to be 71.6 MPa and the compression modulus was about 660 MPa. The fractrography study revealed the uniform distribution of ceramic fillers in the semicrystalline HDPE matrix. The cytocompatibility study with osteoblast-like SaOS2 cells confirmed extensive cell adhesion and proliferation on the injection-molded HDPE20 wt % HA20 wt % Al2O3 composites. The cell viability analysis with the 3(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay revealed a statistically significant difference between the injection-molded HDPE20 wt % HA20 wt % Al2O3 composites and sintered HA for various culture durations of upto 7 days. The difference in cytocompatibility properties among the biocomposites is explained in terms of the difference in the protein absorption behavior. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012