963 resultados para Glandular secretion


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transforming growth factor-beta (TGF-beta) is a multifunctional growth factor that has several biological effects in vivo including control of cell growth and differentiation, cell migration, lineage determination, motility, adhesion, apoptosis, and synthesis and degradation of extracellular matrix, and TGF-beta plays an important role in regulating tissue repair and regeneration. Our study analyzed the participation of TGF-beta 1, -beta 2, and -beta 3 in the different stages of morphogenesis and differentiation of human developing dental organ using immunobistochemistry. The maxillae and mandibles of 10 human embryos ranging from 8 to 23 weeks of gestation were employed, according to the approval of the ethical committee. Our study revealed that the TGF-beta subunits-beta 1, beta 2, and beta 3 were present in the various stages of tooth development, but the expression varied according to the differentiation stage, tissue, and TGF-beta subunit. Our results indicated that TGF-beta 1 is closely related to differentiation of enamel organ and initiation of matrix secretion, TGF-beta 2 to cellular differentiation, and TGF-beta 3 to mineral maturation matrix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diabetes has been implicated in the dryness of the mouth, loss of taste sensation, sialosis, and other disorders of the oral cavity, by impairment of the salivary glands. The aim of the present study was to examine the plasma membrane, microsomal, and homogenate Ca(2+)-ATPase activity in the rat submandibular and parotid salivary glands of streptozotocin-induced diabetes. We have also examined the influence of the acidosis state oil this parameter. Diabetes was induced by an intraperitoneal injection of streptozotocin and acidosis was induced by daily injection of NH(4)Cl. At 15 and 30 days after diabetes induction, the animals were euthanized and the submandibular and parotid salivary glands were removed and analyzed. Ca(2+)-ATPase (total, independent, and dependent) was determined in the homo-enate, microsomal, and plasma membranes of the salivary glands of diabetic and control rats. Calcium concentration was also determined in the glands and showed to be hi-her in the diabetic animals. Ca(2+)-ATPase activity was found to be reduced in all cell fractions studied in the diabetic animals compared with control. Similar results were obtained for the submandibular salivary glands of acidotic animals; however in the parotid salivary glands it was found an increase in the enzyme activity. Copyright (c) 2009 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Urine is an ideal source of materials to search for potential disease-related biomarkers as it is produced by the affected tissues and can be easily obtained by noninvasive methods. 2-DE-based proteomic approach was used to better understand the molecular mechanisms of injury induced by fluoride (F(-)) and define potential biomarkers of dental fluorosis. Three groups of weanling male Wistar rats were treated with drinking water containing 0 (control), 5, or 50 ppm F(-) for 60 days (n = 15/group). During the experimental period, the animals were kept individually in metabolic cages, to analyze the water and food consumption, as well as fecal and urinary F excretion. Urinary proteome profiles were examined using 2-DE and Colloidal Coomassie Brilliant Blue staining. A dose-response regarding F(-) intake and excretion was detected. Quantitative intensity analysis revealed 8, 11, and 8 significantly altered proteins between control vs. 5 ppm F(-), control vs. 50 ppm F(-) and 5 ppm F(-) vs. 50 ppm F(-) groups, respectively. Two proteins regulated by androgens (androgen-regulated 20-KDa protein and 0c-2,1-globulin) and one related to detoxification (aflatoxin-Bl-aldehyde-reductase) were identified by MALDI-TOF-TOF MS/MS. Thus, proteomic analysis can help to better understand the mechanisms underlying F(-) toxicity, even in low doses. 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 25:8-14, 2011; View this article online at wileyonlinelibrary.com. DOI 10:1002/jbt.20353