965 resultados para Geometrical optics
Resumo:
This thesis is done as a part of project called FuncMama that is a project between Technical Research Centre of Finland (VTT), Oulu University (OY), Lappeenranta University of Technology (LUT) and Finnish industrial partners. Main goal of the project is to manufacture electric and mechanical components from mixed materials using laser sintering. Aim of this study was to create laser sintered pieces from ceramic material and monitor the sintering event by using spectrometer. Spectrometer is a device which is capable to record intensity of different wavelengths in relation with time. In this study the monitoring of laser sintering was captured with the equipment which consists of Ocean Optics spectrometer, optical fiber and optical lens (detector head). Light from the sintering process hit first to the lens system which guides the light in to the optical fibre. Optical fibre transmits the light from the sintering process to the spectrometer where wavelengths intensity level information is detected. The optical lens of the spectrometer was rigidly set and did not move along with the laser beam. Data which was collected with spectrometer from the laser sintering process was converted with Excel spreadsheet program for result’s evaluation. Laser equipment used was IPG Photonics pulse fibre laser. Laser parameters were kept mainly constant during experimental part and only sintering speed was changed. That way it was possible to find differences in the monitoring results without fear of too many parameters mixing together and affecting to the conclusions. Parts which were sintered had one layer and size of 5 x 5 mm. Material was CT2000 – tape manufactured by Heraeus which was later on post processed to powder. Monitoring of different sintering speeds was tested by using CT2000 reference powder. Moreover tests how different materials effect to the process monitoring were done by adding foreign powder Du Pont 951 which had suffered in re-grinding and which was more reactive than CT2000. By adding foreign material it simulates situation where two materials are accidently mixed together and it was studied if that can be seen with the spectrometer. It was concluded in this study that with the spectrometer it is possible to detect changes between different laser sintering speeds. When the sintering speed is lowered the intensity level of light is higher from the process. This is a result of higher temperature at the sintering spot and that can be noticed with the spectrometer. That indicates it could be possible to use spectrometer as a tool for process observation and support the idea of having system that can help setting up the process parameter window. Also important conclusion was how well the adding of foreign material could be seen with the spectrometer. When second material was added a significant intensity level raise could be noticed in that part where foreign material was mixed. That indicates it is possible to see if there are any variations in the material or if there are more materials mixed together. Spectrometric monitoring of laser sintering could be useful tool for process window observation and temperature controlling of the sintering process. For example if the process window for specific material is experimentally determined to get wanted properties and satisfying sintering speed. It is possible if the data is constantly recorded that the results can show faults in the part texture between layers. Changes between the monitoring data and the experimentally determined values can then indicate changes in the material being generated by material faults or by wrong process parameters. The results of this study show that spectrometer could be one possible tool for monitoring. But to get in that point where this all can be made possible much more researching is needed.
Resumo:
The fatigue failure of structures under fluctuating loads in fillet weld joints raises a demand to determine the parameters related to this type of loading. In this study, the stress distribution in the susceptible area of weld toe and weld root in fillet welded models analyzed by finite element method applying FEMAP software. To avoid the geometrical singularity on the path of analytical stress analysis in the toe and root area of a weld model the effective notch stress approach applied by which a proper fictitious rounding that mostly depend on the material of structure is applied. The models with different weld toe waving width and radius are analyzed while the flank angle of weld varied in 45 and 30 degrees. The processed results shows that the waving compare to the straight weld toe makes differences in the value of stress and consequently the stress concentration factor between the tip and depth of the waves in the weld toe which helps to protect the crack of propagation and gives enough time and tools to be informed of the crack initiation in the structure during the periodical observation of structure. In the weld root study the analyses among the models with the welding penetration percentage from non-penetration to the full-penetration shows a slightly increase in the root area stress value which comparing with the stiffening effect of penetration conclude that the half-penetration can make an optimization between the stress increase and stiffening effect of deep penetration.
Resumo:
Työssä tutkittiin hitsattujen levyliitosten väsymiskestävyyden mitoitusarvoja. Hitsien väsymiskestävyyden mitoitusarvot määritettiin lineaarista murtumismekaniikkaa soveltavalla 2D FEM-laskentaohjelmalla. Murtumismekaanisen laskennan tuloksista määriteltiin, eri liitosgeometrioiden ja kuormitustyyppien mukaisia, nimellisen jännityksen väsymismitoitusmenetelmää vastaavia FAT-luokkia, joissa on huomioitu rakenteellinen jännitys hitsiä vastaan kohtisuorassa suunnassa. Tutkittujen liitosten geometriat olivat pääsääntöisesti poikkeavia mitoitusstandardien ja ohjeiden sisältämistä taulukkotapauksista. Laskennassa otettiin huomioon hitsien liittymiskulma perusaineeseen, rajaviivan pyöristykset ja vajaa hitsautumissyvyys. Kuormitustyyppien vaihtelua tutkittiin rakenteellisen jännityksen taivutusosuuden muutoksilla ja kuormaa kantavien X-liitosten risteävien kuormituksien suhteellisilla suuruuksilla. Väsymiskestävyydet määritettiin kuormituskohtaisille kalvo- ja taivutusjännityksille sekä näiden jännitysjakaumien keskiarvoille. Työssä saatuja FAT-luokkia voidaan hyödyntää vastaavien geometrioiden ja kuormitusten yhteydessä, sekä interpoloimalla myös tuloksien väliarvoissa. Työssä käytetyillä menetelmillä voidaan parantaa nimellisen jännityksen mitoitusmenetelmän tarkkuutta ja laajentaa sitä koskemaan myös taulukkotapausten ulkopuolisia liitoksia. Työn tuloksissa on esitetty FAT-luokkia T-, X- ja päittäisliitoksille ja näiden eri kuormitusyhdistelmille.
Resumo:
This thesis comprises seven peer-reviewed articles and examines systems and applications suitable for increasing Future Force Warrior performance, minimizing collateral damage, improving situational awareness and Common Operational Picture. Based on a literature study, missing functionalities of Future Force Warrior were identified and new ideas, concepts and solutions were created as part of early stages of Systems of Systems creation. These introduced ideas have not yet been implemented or tested in combat and for this reason benefit analyses are excluded. The main results of this thesis include the following: A new networking concept, Wireless Polling Sensor Network, which is a swarm of a few Unmanned Aerial Vehicles forming an ad-hoc network and polling a large number of fixed sensor nodes. The system is more robust in a military environment than traditional Wireless Sensor Networks. A Business Process approach to Service Oriented Architecture in a tactical setting is a concept for scheduling and sharing limited resources. New components to military Service Oriented Architecture have been introduced in the thesis. Other results of the thesis include an investigation of the use of Free Space Optics in tactical communications, a proposal for tracking neutral forces, a system for upgrading simple collaboration tools for command, control and collaboration purposes, a three-level hierarchy of Future Force Warrior, and methods for reducing incidents of fratricide.
Resumo:
The fuel element of LMFBR consists of a bundle of rods wrapped with an helical wire as spacer, surrounded by an hexagonal duct. In the present work, a semi-empirical model is developed to calculate bundle average and subchannel based friction factors and flow redistribution. The obtained results were compared to experimental data and they were considered satisfactory for wide range of geometrical parameters.