995 resultados para Geological modeling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The finite element method (FEM) is growing in popularity over the pressure diagram/hand calculation method for analysis of excavation systems in general and deep soil mixing excavations in particular. In this paper, a finite element analysis is used to study the behavior of a deep mixed excavation. Through the use of Plaxis (a FEM software program), the construction sequence is simulated by following the various construction phases allowing for deflections due to strut or anchor installation to be predicted. The numerical model used in this study simulates the soil cement columns as a continuous wall matching the bending stiffness of the actual wall. Input parameters based on laboratory tests and modeling assumptions are discussed. An example of the approach is illustrated using the Islais Creek Transport/Storage Project in San Francisco, California. Copyright ASCE 2006.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The response of clay is highly dependent on straining and loading rate. To obtain a realistic prediction of the response for time dependent problems, it is essential to use a model that accounts for rate effects in the stress-strain-strength properties of soils. The proposed model has been expanded from the existing SIMPLE DSS framework to account for the strain rate effects on clays in simple shear conditions. In accordance with the findings in the existing literature, soil response displays a unique relationship between shear strength and strain rate. The predicting model is illustrated with a limited test data. Copyright ASCE 2006.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submarine landslides pose considerable hazards to coastal communities and offshore structures. The difficulty and cost of obtaining undisturbed samples of offshore soils for determining material properties required for slope stability analyses contribute to the complexity of the problem. There are significant advantages in using a simplified model for the seismic response of submarine slopes, compatible with the limited amount of information that can be realistically gathered, but still able to capture the key elements of clay behavior. This paper illustrates the process of parameter determination and calibration of the SIMPLE DSS model, developed for the study of seismic triggering of submarine slope instabilities. The selection of parameters and predictions of monotonic and cyclic simple shear response are carried out for Boston Blue Clay, a marine clay extensively studied and with a large experimental database available in the literature. The results show that the simplified model is able to reproduce the important trends in the response of the soil, especially in accounting for the effect of the slope.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Midbrain dopaminergic neurons are endowed with endogenous slow pacemaking properties. In recent years, many different groups have studied the basis for this phenomenon, often with conflicting conclusions. In particular, the role of a slowly-inactivating L-type calcium channel in the depolarizing phase between spikes is controversial, and the analysis of slow oscillatory potential (SOP) recordings during the blockade of sodium channels has led to conflicting conclusions. Based on a minimal model of a dopaminergic neuron, our analysis suggests that the same experimental protocol may lead to drastically different observations in almost identical neurons. For example, complete L-type calcium channel blockade eliminates spontaneous firing or has almost no effect in two neurons differing by less than 1% in their maximal sodium conductance. The same prediction can be reproduced in a state of the art detailed model of a dopaminergic neuron. Some of these predictions are confirmed experimentally using single-cell recordings in brain slices. Our minimal model exhibits SOPs when sodium channels are blocked, these SOPs being uncorrelated with the spiking activity, as has been shown experimentally. We also show that block of a specific conductance (in this case, the SK conductance) can have a different effect on these two oscillatory behaviors (pacemaking and SOPs), despite the fact that they have the same initiating mechanism. These results highlight the fact that computational approaches, besides their well known confirmatory and predictive interests in neurophysiology, may also be useful to resolve apparent discrepancies between experimental results. © 2011 Drion et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DYN3D reactor dynamics nodal diffusion code was originally developed for the analysis of Light Water Reactors. In this paper, we demonstrate the feasibility of using DYN3D for modeling of fast spectrum reactors. A homogenized cross sections data library was generated using continuous energy Monte-Carlo code Serpent which provides significant modeling flexibility compared with traditional deterministic lattice transport codes and tolerable execution time. A representative sodium cooled fast reactor core was modeled with the Serpent-DYN3D code sequence and the results were compared with those produced by ERANOS code and with a 3D full core Monte-Carlo solution. Very good agreement between the codes was observed for the core integral parameters and power distribution suggesting that the DYN3D code with cross section library generated using Serpent can be reliably used for the analysis of fast reactors. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents results of a feasibility study aimed at developing a zero-transuranic-discharge fuel cycle based on the U-Th-TRU ternary cycle. The design objective is to find a fuel composition (mixture of thorium, enriched uranium, and recycled transuranic components) and fuel management strategy resulting in an equilibrium charge-discharge mass flow. In such a fuel cycle scheme, the quantity and isotopic vector of the transuranium (TRU) component is identical at the charge and discharge time points, thus allowing the whole amount of the TRU at the end of the fuel irradiation period to be separated and reloaded into the following cycle. The TRU reprocessing activity losses are the only waste stream that will require permanent geological storage, virtually eliminating the long-term radiological waste of the commercial nuclear fuel cycle. A detailed three-dimensional full pressurized water reactor (PWR) core model was used to analyze the proposed fuel composition and management strategy. The results demonstrate the neutronic feasibility of the fuel cycle with zero-TRU discharge. The amount of TRU and enriched uranium loaded reach equilibrium after about four TRU recycles. The reactivity coefficients were found to be within a range typical for a reference PWR core. The soluble boron worth is reduced by a factor of ∼2 from a typical PWR value. Nevertheless, the results indicate the feasibility of an 18-month fuel cycle design with an acceptable beginning-of-cycle soluble boron concentration even without application of burnable poisons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Touchscreen devices are often limited by the complexity of their user interface design. In the past, iterative design processes using representative user groups to test prototypes were the standard method for increasing the inclusivity of a given design, but cognitive modeling has potential to be an alternative to rigorous user testing. However, these modeling approaches currently have many limitations, some of which are based on the assumptions made in translating a User Interface (UI) into a definition file that cognitive modeling frameworks can process. This paper discusses these issues and postulates potential approaches to improvements to the translation procedure. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a mathematical model of a microelectromechanical system (MEMS) oscillator that integrates the nonlinearities of the MEMS resonator and the oscillator circuitry in a single numerical modeling environment. This is achieved by transforming the conventional nonlinear mechanical model into the electrical domain while simultaneously considering the prominent nonlinearities of the resonator. The proposed nonlinear electrical model is validated by comparing the simulated amplitude¿frequency response with measurements on an open-loop electrically addressed flexural silicon MEMS resonator driven to large motional amplitudes. Next, the essential nonlinearities in the oscillator circuit are investigated and a mathematical model of a MEMS oscillator is proposed that integrates the nonlinearities of the resonator. The concept is illustrated for MEMS transimpedance-amplifier-based square-wave and sine-wave oscillators. Closed-form expressions of steady-state output power and output frequency are derived for both oscillator models and compared with experimental and simulation results, with a good match in the predicted trends in all three cases. © 1986-2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fracture behavior of thin films of bitumen in double cantilever beam (DCB) specimens was investigated over a wide range of temperature and loading rate conditions using finite-element analysis. The model includes a phenomenological model for the mechanical behavior of bitumen, implemented into a special-purpose finite-element user material subroutine, combined with a cohesive zone model (CZM) for simulating the fracture process. The finite-element model is validated against experimental results from laboratory tests of DCB specimens by comparing measured and predicted load-line deflection histories and fracture energy release rates. Computer simulation results agreed well with experimental data of DCB joints containing bitumen films in terms of peak stress, fracture toughness, and stress-strain history response. The predicted "normalized toughness," G=2h, was found to increase in a power-law manner with effective temperaturecompensated strain rate in the ductile region as previously observed experimentally. In the brittle regime, G=2h is virtually constant. The model successfully captured the ductile and brittle failure behavior of bitumen films in opening mode (tension) for stable crack growth conditions. © 2013 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behavior of the drain voltage rise of the Lateral IGBT during inductive turn-off is studied in detail. Numerical simulations show that, if compared with the well known vertical IGBT, the Lateral IGBT presents a differences in the on-state stored charge and in the growth of the depleted region that result in a different drain voltage rise. In this paper a complete model for the voltage rise is devised through an accurate calculation of the equivalent output capacitance. The model is in excellent agreement with two-dimensional simulations. Further, the paper shows that previously proposed models, which targeted the vertical IGBT, are not adequate for the description of the turn-off voltage rise in the Lateral IGBT. © Springer Science + Business Media LLC 2006.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brushless doubly fed induction generator (BDFIG) has substantial benefits, which make it an attractive alternative as a wind turbine generator. However, it suffers from lower efficiency and larger dimensions in comparison to DFIG. Hence, optimizing the BDFIG structure is necessary for enhancing its situation commercially. In previous studies, a simple model has been used in BDFIG design procedure that is insufficiently accurate. Furthermore, magnetic saturation and iron loss are not considered because of difficulties in determination of flux density distributions. The aim of this paper is to establish an accurate yet computationally fast model suitable for BDFIG design studies. The proposed approach combines three equivalent circuits including electric, magnetic and thermal models. Utilizing electric equivalent circuit makes it possible to apply static form of magnetic equivalent circuit, because the elapsed time to reach steady-state results in the dynamic form is too long for using in population-based design studies. The operating characteristics, which are necessary for evaluating the objective function and constraints values of the optimization problem, can be calculated using the presented approach considering iron loss, saturation, and geometrical details. The simulation results of a D-180 prototype BDFIG are compared with measured data in order to validate the developed model. © 1986-2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shallow foundations built on saturated deposits of granular soils in seismically active areas are, regardless of their static bearing capacity, critical structures during seismic events. A single centrifuge experiment involving shallow foundations situated atop a liquefiable soil deposit has been performed to identify the mechanisms involved in the interaction between liquefaction-induced effects on neighboring shallow foundations. Centrifuge test results indicate that liquefaction causes significant settlements of footings, which are affected by the presence of neighboring foundations and can be extremely damaging to the superstructure. The understanding of these interaction effects is very important, mainly in densely populated urban areas. The development of high excess pore-pressures, localized drainage in response to the high transient hydraulic gradients, and earthquake-induced vertical motions to the footings are also important effects that are discussed to assist in enhancing current understanding and ability to predict liquefaction effects on shallow foundations. © 2014 Taylor & Francis Group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: It has been shown that mutations in at least four myotubularin family genes (MTM1, MTMR1, 2 and 13) are causative for human neuromuscular disorders. However, the pathway and regulative mechanism remain unknown. Methodology/Principal Findings: Here, we reported a new role for Mtmr8 in neuromuscular development of zebrafish. Firstly, we cloned and characterized zebrafish Mtmr8, and revealed the expression pattern predominantly in the eye field and somites during early somitogenesis. Using morpholino knockdown, then, we observed that loss-of-function of Mtmr8 led to defects in somitogenesis. Subsequently, the possible underlying mechanism and signal pathway were examined. We first checked the Akt phosphorylation, and observed an increase of Akt phosphorylation in the morphant embryos. Furthermore, we studied the PH/G domain function within Mtmr8. Although the PH/G domain deletion by itself did not result in embryonic defect, addition of PI3K inhibitor LY294002 did give a defective phenotype in the PH/G deletion morphants, indicating that the PH/G domain was essential for Mtmr8's function. Moreover, we investigated the cooperation of Mtmr8 with PI3K in actin filament modeling and muscle development, and found that both Mtmr8-MO1 and Mtmr8-MO2+LY294002 led to the disorganization of the actin cytoskeleton. In addition, we revealed a possible participation of Mtmr8 in the Hedgehog pathway, and cell transplantation experiments showed that Mtmr8 worked in a non-cell autonomous manner in actin modeling. Conclusion/Significance: The above data indicate that a conserved functional cooperation of Mtmr8 with PI3K regulates actin filament modeling and muscle development in zebrafish, and reveal a possible participation of Mtmr8 in the Hedgehog pathway. Therefore, this work provides a new clue to study the physiological function of MTM family members.