967 resultados para Genomics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vector control is the mainstay of malaria control programmes. Successful vector control profoundly relies on accurate information on the target mosquito populations in order to choose the most appropriate intervention for a given mosquito species and to monitor its impact. An impediment to identify mosquito species is the existence of morphologically identical sibling species that play different roles in the transmission of pathogens and parasites. Currently PCR diagnostics are used to distinguish between sibling species. PCR based methods are, however, expensive, time-consuming and their development requires a priori DNA sequence information. Here, we evaluated an inexpensive molecular proteomics approach for Anopheles species: matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). MALDI-TOF MS is a well developed protein profiling tool for the identification of microorganisms but so far has received little attention as a diagnostic tool in entomology. We measured MS spectra from specimens of 32 laboratory colonies and 2 field populations representing 12 Anopheles species including the A. gambiae species complex. An important step in the study was the advancement and implementation of a bioinformatics approach improving the resolution over previously applied cluster analysis. Borrowing tools for linear discriminant analysis from genomics, MALDI-TOF MS accurately identified taxonomically closely related mosquito species, including the separation between the M and S molecular forms of A. gambiae sensu stricto. The approach also classifies specimens from different laboratory colonies; hence proving also very promising for its use in colony authentication as part of quality assurance in laboratory studies. While being exceptionally accurate and robust, MALDI-TOF MS has several advantages over other typing methods, including simple sample preparation and short processing time. As the method does not require DNA sequence information, data can also be reviewed at any later stage for diagnostic or functional patterns without the need for re-designing and re-processing biological material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metabolomics is the global and unbiased survey of the complement of small molecules (say, <1 kDa) in a biofluid, tissue, organ or organism and measures the end-products of the cellular metabolism of both endogenous and exogenous substrates. Many drug candidates fail during Phase II and III clinical trials at an enormous cost to the pharmaceutical industry in terms of both time lost and of financial resources. The constantly evolving model of drug development now dictates that biomarkers should be employed in preclinical development for the early detection of likely-to-fail candidates. Biomarkers may also be useful in the preselection of patients and through the subclassification of diseases in clinical drug development. Here we show with examples how metabolomics can assist in the preclinical development phases of discovery, pharmacology, toxicology, and ADME. Although not yet established as a clinical trial patient prescreening procedure, metabolomics shows considerable promise in this regard. We can be certain that metabolomics will join genomics and transcriptomics in lubricating the wheels of clinical drug development in the near future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA-based parentage determination accelerates genetic improvement in sheep by increasing pedigree accuracy. Single nucleotide polymorphism (SNP) markers can be used for determining parentage and to provide unique molecular identifiers for tracing sheep products to their source. However, the utility of a particular "parentage SNP" varies by breed depending on its minor allele frequency (MAF) and its sequence context. Our aims were to identify parentage SNPs with exceptional qualities for use in globally diverse breeds and to develop a subset for use in North American sheep. Starting with genotypes from 2,915 sheep and 74 breed groups provided by the International Sheep Genomics Consortium (ISGC), we analyzed 47,693 autosomal SNPs by multiple criteria and selected 163 with desirable properties for parentage testing. On average, each of the 163 SNPs was highly informative (MAF≥0.3) in 48±5 breed groups. Nearby polymorphisms that could otherwise confound genetic testing were identified by whole genome and Sanger sequencing of 166 sheep from 54 breed groups. A genetic test with 109 of the 163 parentage SNPs was developed for matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. The scoring rates and accuracies for these 109 SNPs were greater than 99% in a panel of North American sheep. In a blinded set of 96 families (sire, dam, and non-identical twin lambs), each parent of every lamb was identified without using the other parent's genotype. In 74 ISGC breed groups, the median estimates for probability of a coincidental match between two animals (PI), and the fraction of potential adults excluded from parentage (PE) were 1.1×10(-39) and 0.999987, respectively, for the 109 SNPs combined. The availability of a well-characterized set of 163 parentage SNPs facilitates the development of high-throughput genetic technologies for implementing accurate and economical parentage testing and traceability in many of the world's sheep breeds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The diversity of populations in domestic species offers great opportunities to study genome response to selection. The recently published Sheep HapMap dataset is a great example of characterization of the world wide genetic diversity in sheep. In this study, we re-analyzed the Sheep HapMap dataset to identify selection signatures in worldwide sheep populations. Compared to previous analyses, we made use of statistical methods that (i) take account of the hierarchical structure of sheep populations, (ii) make use of linkage disequilibrium information and (iii) focus specifically on either recent or older selection signatures. We show that this allows pinpointing several new selection signatures in the sheep genome and distinguishing those related to modern breeding objectives and to earlier post-domestication constraints. The newly identified regions, together with the ones previously identified, reveal the extensive genome response to selection on morphology, color and adaptation to new environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND A novel Gram-negative, non-haemolytic, non-motile, rod-shaped bacterium was discovered in the lungs of a dead parakeet (Melopsittacus undulatus) that was kept in captivity in a petshop in Basel, Switzerland. The organism is described with a chemotaxonomic profile and the nearly complete genome sequence obtained through the assembly of short sequence reads. RESULTS Genome sequence analysis and characterization of respiratory quinones, fatty acids, polar lipids, and biochemical phenotype is presented here. Comparison of gene sequences revealed that the most similar species is Pelistega europaea, with BLAST identities of only 93% to the 16S rDNA gene, 76% identity to the rpoB gene, and a similar GC content (~43%) as the organism isolated from the parakeet, DSM 24701 (40%). The closest full genome sequences are those of Bordetella spp. and Taylorella spp. High-throughput sequencing reads from the Illumina-Solexa platform were assembled with the Edena de novo assembler to form 195 contigs comprising the ~2 Mb genome. Genome annotation with RAST, construction of phylogenetic trees with the 16S rDNA (rrs) gene sequence and the rpoB gene, and phylogenetic placement using other highly conserved marker genes with ML Tree all suggest that the bacterial species belongs to the Alcaligenaceae family. Analysis of samples from cages with healthy parakeets suggested that the newly discovered bacterial species is not widespread in parakeet living quarters. CONCLUSIONS Classification of this organism in the current taxonomy system requires the formation of a new genus and species. We designate the new genus Basilea and the new species psittacipulmonis. The type strain of Basilea psittacipulmonis is DSM 24701 (= CIP 110308 T, 16S rDNA gene sequence Genbank accession number JX412111 and GI 406042063).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND The free-living amoeba Naegleria fowleri is the causative agent of the rapidly progressing and typically fatal primary amoebic meningoencephalitis (PAM) in humans. Despite the devastating nature of this disease, which results in > 97% mortality, knowledge of the pathogenic mechanisms of the amoeba is incomplete. This work presents a comparative proteomic approach based on an experimental model in which the pathogenic potential of N. fowleri trophozoites is influenced by the compositions of different media. RESULTS As a scaffold for proteomic analysis, we sequenced the genome and transcriptome of N. fowleri. Since the sequence similarity of the recently published genome of Naegleria gruberi was far lower than the close taxonomic relationship of these species would suggest, a de novo sequencing approach was chosen. After excluding cell regulatory mechanisms originating from different media compositions, we identified 22 proteins with a potential role in the pathogenesis of PAM. Functional annotation of these proteins revealed, that the membrane is the major location where the amoeba exerts its pathogenic potential, possibly involving actin-dependent processes such as intracellular trafficking via vesicles. CONCLUSION This study describes for the first time the 30 Mb-genome and the transcriptome sequence of N. fowleri and provides the basis for the further definition of effective intervention strategies against the rare but highly fatal form of amoebic meningoencephalitis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tef Eragrostis tef (Zucc.) Trotter is a cereal crop resilient to adverse climatic and soil conditions, and possessing desirable storage properties. Although tef provides high quality food and grows under marginal conditions unsuitable for other cereals, it is considered to be an orphan crop because it has benefited little from genetic improvement. Hence, unlike other cereals such as maize and wheat, the productivity of tef is extremely low. In spite of the low productivity, tef is widely cultivated by over six million small-scale farmers in Ethiopia where it is annually grown on more than three million hectares of land, accounting for over 30% of the total cereal acreage. Tef, a tetraploid with 40 chromosomes (2n=4x=40), belongs to the Family Poaceae and, together with finger millet (Eleusine coracana Gaertn), to the Subfamily Chloridoideae. It was believed to have originated in Ethiopia. There are about 350 Eragrostis species of which E. tef is the only species cultivated for human consumption. At the present time, the gene bank in Ethiopia holds over five thousand tef accessions collected from geographical regions diverse in terms of climate and elevation. These germplasm accessions appear to have huge variability with regard to key agronomic and nutritional traits. In order to properly utilize the variability in developing new tef cultivars, various techniques have been implemented to catalog the extent and unravel the patterns of genetic diversity. In this review, we show some recent initiatives investigating the diversity of tef using genomics, transcriptomics and proteomics and discuss the prospect of these efforts in providing molecular resources that can aid modern tef breeding.