1000 resultados para Genetic infonnation
Resumo:
Three F-1 families of the bay scallop, Argopecten irradians, were produced from one, two and 10 individuals. The genetic changes in these populations, which suffered recent and different levels of bottleneck, were analysed using amplified fragment length polymorphism (AFLP) techniques. In the parental stock, a total of 330 bands were detected using seven AFLP primer pairs, and 70% of the loci were polymorphic. All F-1 groups had a significantly lower proportion of polymorphic loci when compared with the initial stock, and loss of the rare loci and reduction in heterozygosity both occurred. The progeny of the larger population (i.e., N=10) exhibited a lesser amount of genetic differentiation compared with the progeny from N=2, which showed lesser differentiation than progeny from N=1. The effective population sizes (N-e) in N=1, 2 and 10 were estimated as 1.50, 1.61 and 2.49. Based on regression analysis, we recommend that at least 340 individuals be used in hatchery populations to maintain genetic variation.
Resumo:
Amplified fragment length polymorphisms (AFLPs) were used for genome mapping in the Pacific Oyster Crassostrea gigas Thunberg. Seventeen selected primer combinations produced 1106 peaks, of which 384 (34.7%) were polymorphic in a backcross family. Among the polymorphic markers, 349 were segregating through either the female or the male parent. Chi-square analysis indicated that 255 (73.1%) of the markers segregated in a Mendelian ratio, and 94 (26.9%) showed significant (P < 0.05) segregation distortion. Separate genetic linkage maps were constructed for the female and male parents. The female framework map consisted of 119 markers in 11 linkage groups, spanning 1030.7 cM, with an average interval of 9.5 cM per marker. The male map contained 96 markers in 10 linkage groups, covering 758.4 cM, with 8.8 cM per marker. The estimated genome length of the Pacific oyster was 1258 cM for the female and 933 cM for the male, and the observed coverage was 82.0% for the female map and 81.3% for the male map. Most distorted markers were deficient for homozygotes and closely linked to each other on the genetic map, suggesting the presence of major recessive deleterious genes in the Pacific oyster.
Resumo:
As a prelude to strain selection for domestication and future marker assisted selection, genetic variation revealed by microsatellite DNA was evaluated in yellow perch, Perca flavescens, from four wild North American populations collected in 2003-2004 (Maine, New York, North Carolina, and Pennsylvania,), and two captive populations (Michigan and Ohio). For the loci examined, levels of heterozygosity ranged from H-e=0.04 to 0.88, genetic differentiation was highly significant among all population pairs, and effective migration ranged from low (N(e)m=0.3) to high (N(e)m=4.5). Deviation from Hardy-Weinberg equilibrium was regularly observed indicating significant departures from random mating. Instantaneous measures of inbreeding within these populations ranged from near zero to moderate (median F=0.16) and overall inbreeding levels averaged F-IS=0.18. Estimates of genetic diversity, Phi(ST), and genetic distance were highest between Michigan and all other broodstock groups and lowest between New York and Ohio. Genetic differentiation among groups did not correlate with geographic distance. Overall, the patterns of variation exhibited by the captive (Michigan and Ohio) populations were similar to patterns exhibited by the other wild populations, indicating that spawning and management practices to date have not significantly reduced levels of genetic variation. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Heritability and genetic and phenotypic correlations were estimated for juvenile growth traits of Pacific abalone Haliotis discus hannai Ino. The estimates were calculated from shell length and shell width measurements on progeny resulting from 12 half-sib families and 36 full-sib families obtained using artificial fertilization of mating three females to each male. The measurements were taken at 10, 20 and 30 d after fertilization. It was found that heritability estimates based on sire component ranged from 0.23 to 0.36 for shell length and 0.21 to 0.32 for shell width. Heritability estimates from dam component were larger than those from sire component at three ages, indicating presence of maternal effects, non-additive genetic effects and common environmental effects. Phenotypic correlations were significant at three ages (P < 0.05), with values of 0.92, 0.93 and 0.92, respectively. Genetic correlations from the paternal half-sib correlation analysis were highly positive at three ages, with values of 0.50, 0.78 and 0.81, respectively. The results suggest that selective breeding is an effective approach to improving growth traits of Pacific abalone stocks.
Resumo:
We constructed genetic linkage maps for the bay scallop Argopecten irradians using AFLP and microsatellite markers and conducted composite interval mapping (CIM) of body-size-related traits. Three hundred seventeen AFLP and 10 microsatellite markers were used for map construction. The female parent map contained 120 markers in 15 linkage groups, spanning 479.6 cM with an average interval of 7.0 cM. The male parent map had 190 markers in 17 linkage groups, covering 883.8 cM at 7.2 cM per marker. The observed coverage was 70.4% for the female and 81.1% for the male map. Markers that were distorted toward the same direction were closely linked to each other on the genetic maps, suggesting the presence of genes important for survival. Six size-related traits, shell length, shell height, shell width, total weight, soft tissue weight, and shell weight, were measured for QTL mapping. The size data were significantly correlated with each other. We subjected the data, log transformed firstly, to a principle component analysis and use the first principle component for QTL mapping. CIM analysis revealed one significant QTL (LOD=2.69, 1000 permutation, P<0.05) in linkage group 3 on the female parent map. The mapping of size-related QTL in this study raises the possibility of improving the growth of bay scallops through marker-assisted selection. (c) 2007 Published by Elsevier B.V.
Resumo:
Preliminary genetic linkage maps were constructed for the Pacific abalone (Haliotis discus hannai Ino) using amplified fragment length polymorphism (AFLP), randomly amplified polymorphic DNA (RAPD), and microsatellite markers segregating in a F, family. Nine microsatellite loci, 41 RAPD, and 2688 AFLP markers were genotyped in the parents and 86 progeny of the mapping family. Among the 2738 markers, 384 (including 365 AFLP markers, 10 RAPD markers, and 9 microsatellite loci) were polymorphic and segregated in one or both parents: 241 in the female and 146 in the male. The majority of these markers, 232 in the female and 134 in the male, segregated according to the expected 1:1 Mendelian ratio (alpha = 0.05). Two genetic linkage maps were constructed using markers segregating in the female or the male parent. The female framework map consisted of 119 markers in 22 linkage groups, covering 1773.6 cM with an average intermarker space of 18.3 cM. The male framework map contained 94 markers in 19 linkage groups, spanning 1365.9 cM with an average intermarker space of 18.2 cM. The sex determination locus was mapped to the male map but not to the female map, suggesting a XY-male determination mechanism. Distorted markers showing excess of homozygotes were mapped in clusters, probably because of their linkage to a gene that is incompatible between two parental populations.
Resumo:
Fenneropenaeus chinensis distributed in the Yellow Sea and Bohai Sea of China and the west coast of the Korean Peninsula. Different geographical populations represent potentially different genetic resources. To learn further the characteristics of different geographical population, crosses among two wild and three farmed populations were produced. The two wild populations were from the Yellow Sea and Bohai Sea (WYP), and the west coast of the Korean Peninsula and coast (WKN). The three farmed populations included the offspring of first generation of wild shrimp from coast in Korea (FKN), the Huang Hai (the Yellow Sea in Chinese) No.1 (HH1), and JK98. The phenotypes growth and survival rates of these populations were compared to confirm the feasibility for crossbreeding. The body length (BL), carapace length (CL), carapace width (CW), height of the second and third abdominal segment (HST), width of the second and third abdominal segment (WST), length of the first abdominal segment (LF), length of the last abdominal segment (LL), live body weight (BW), and survival rate were measured. Different combinations were statistically performed with ANOVA and Duncan's Multiple Range Test. The results show that the survival rate of JK98(a (TM) Euro)xWKN(a (TM),) was the highest, followed by WYP(a (TM) Euro)xWKN(a (TM),), FKN(a (TM) Euro)xWYP(a (TM),), FKN(a (TM) Euro)xHH1(a (TM),) and WYP(a (TM) Euro)xFKN(a (TM),); the body weight of FKN(a (TM) Euro)sxHH1(a (TM),) was the highest, followed by FKN(a (TM) Euro)xWYP(a (TM),), WYP(a (TM) Euro)xWKN(a (TM),), WYP(a (TM) Euro)xFKN(a (TM),) and JK98(a (TM) Euro)xWKN(a (TM),); the total length had the same ranking as the body weight. All growth traits in hybrids JK98(a (TM) Euro)xWKN(a (TM),) were the lowest among all combinations. F1 hybrids had significant difference (P < 0.05) in BL, CL, HST, LL, and BW; and insignificant difference (P > 0.05) in other growth traits and survival rate. The results of Duncan's Multiple Range Test are that BL and CL of JK98(a (TM) Euro)xWKN(a (TM),) were significantly different from the other combinations; HST different from the combination of FKN(a (TM) Euro)xWYP(a (TM),), FKN(a (TM) Euro)xHH1(a (TM),) and WYP(a (TM) Euro)xWKN(a (TM),); and BW different from FKN(a (TM) Euro)xWYP(a (TM),) and FKN(a (TM) Euro)xHH1(a (TM),). As a whole, the results indicate that the FKN(a (TM) Euro)xHH1(a (TM),) was the best combination in all growth traits. Therefore, hybridization can introduce the variation to base populations. The systematic selection program based on additive genetic performance may be more effective than crossbreeding.
Resumo:
The paper systematically discusses the mechanism for glycinebetaine to improve plant salt resistance and its research advances in genetic engineering at home and abroad as well as summarizing the research progresses about the key enzymes and their genetic engineering in glycinebetaine biosynthesis. It suggests that on the basis of further understanding the mechanism for glycinebetaine to improve plant salt resistance,the transformation of the genes relating to glycinebetaine biosynthesis should be carried out in major crops so that new plant varieties resistant to salt can be obtained.
Resumo:
We studied the relationship between genetic diversity of the subterranean Gansu zokor Myospalax cansus and habitat variability in the Loess Plateau, Qinghai Province, China. We used a combination of geographic information systems and molecular techniques to assess the impact of habitat composition and human activities on the genetic diversity of zokor populations in this semi-natural landscape. Although they occurred relatively infrequently in the landscape, woodland and high-coverage grassland habitats were the main positive contributors to the genetic diversity of zokor populations. Rural residential land, plain agricultural land and low-coverage grassland had a negative effect on genetic diversity. Hilly agricultural land and middle-coverage grassland had little impact on zokor genetic diversity. There were also interactions between some habitat types, that is, habitat types with relatively better quality together promoted conservation of genetic diversity, while the interaction between (among) bad habitat types made situations worse. Finally, habitat diversity, measured as patch richness and Shannon's diversity index, was positively correlated with the genetic diversity. These results demonstrated that: (1) different habitat types had different effects on the genetic diversity of zokor populations and (2) habitat quality and habitat heterogeneity were important in maintaining genetic diversity. Habitat composition was closely related to land use thus emphasizing the importance of human activities on the genetic diversity of subterranean rodent populations in this semi-natural landscape. Although the Gansu zokor was considered to be a pest species in the Loess Plateau, our study provides insights for the management and conservation of other subterranean rodent species.
Resumo:
We used random amplified polymorphic DNA markers (RAPDs) to assess genetic variation between- and within-populations of Anisodus tanguticus (Solanaceae), an endangered perennial endemic to the Qinghai-Tibetan Plateau with important medicinal value. We recorded a total of 92 amplified bands, using 12 RAPD primers, 76 of which (P = 82.61%) were polymorphic, and calculated values of H-t and H-sp of 0.3015 and 0.4459, respectively, suggesting a remarkably high rate of genetic variation at the species level. The average within-population diversity also appeared to be high, with P, H-e and H-pop values of 55.11%, 0.1948 and 0.2918, respectively. Analyses of molecular variance (AMOVA) showed that among- and between-population genetic variation accounted for 67.02% and 32.98% of the total genetic variation, respectively. In addition, Nei's coefficient of differentiation (G(ST)) was found to be high (0.35), confirming the relatively high level of genetic differentiation among the populations. These differentiation coefficients are higher than mean corresponding coefficients for outbreeding species, but lower than reported coefficients for some rare species from this region. The genetic structure of A. tanguticus has probably been shaped by its breeding attributes, biogeographic history and human impact due to collection for medicinal purposes. The observed genetic variations suggest that as many populations as possible should be considered in any planned in situ or ex situ conservation programs for this species.
Resumo:
Repeated cycles of retreat and recolonization during the Quaternary ice ages are thought to have greatly influenced current species distributions and their genetic diversity. It remains unclear how this climatic oscillation has affected the distribution of genetic diversity between populations of wind-pollinated conifers in the Qinghai-Tibetan region. In this study, we investigated the within-species genetic diversity and phylogenetic relationships of Picea likiangensis, a dominant forest species in this region using polymorphic DNA (RAPD) markers. Our results suggest that this species has high overall genetic diversity, with 85.42% of loci being polymorphic and an average expected heterozygosity (H (E)) of 0.239. However, there were relatively low levels of polymorphism at population levels and the differences between populations were not significant, with percentages of polymorphic bands (PPB) ranging from 46.88 to 69.76%, Nei's gene diversity (H (E)) from 0.179 to 0.289 and Shannon's indices (Hpop) from 0.267 to 0.421. In accordance with our proposed hypothesis, a high level of genetic differentiation among populations was detected based on Nei's genetic diversity (G (ST) = 0.256) and AMOVA analysis (Phi (st) = 0.236). Gene flow between populations was found to be limited (Nm = 1.4532) and far lower than reported for other conifer species with wide distribution ranges from other regions. No clusters corresponding to three morphological varieties found in the south, north and west, respectively, were detected in either UPGMA or PCO analyses. Our results suggest that this species may have had different refugia during the glacial stages in the southern region and that the northern variety may have multiple origins from these different refugia.
Resumo:
1. Complete sequences of 1140 base pair of the cytochrome b gene from 133 specimens were obtained from nine localities including the inflow drainage system, isolated lakes and outflow drainage system in Qinghai-Tibetan Plateau to assess genetic diversity and to infer population histories of the freshwater fish Schizopygopsis pylzovi.2. Nucleotide diversities (pi) were moderate (0.0024-0.0045) in populations from the outflow drainage system and Tuosuo Lake, but low (0.0018-0.0021) in populations from Qiadam Basin. It is probable that the low intra-population variability is related with the paleoenvironmental fluctuation in Qiadam Basin, suggesting that the populations from Qiadam Basin have experienced severe bottleneck events in history.3. Phylogenetic tree topologies indicate that the individuals from different populations did not form reciprocal monophyly, but the populations from the adjacent drainages cluster geographically. Most population pairwise F-ST tests were significant, with non-significant pairwise tests between Tuosu Lake and Tuosuo Lake in the north-west of the Qinghai-Tibetan Plateau. Analysis of molecular variance (AMOVA) indicates that the significant genetic variation was explained at the levels of catchments within and among, not among specific boundaries or inflow and outflow drainage systems.4. The nested clade phylogeographical analysis indicates that historical processes are very important in the observed geographical structuring of S. pylzovi, and the contemporary population structure and differentiation of S. pylzovi may be consistent with the historical tectonic events occurred in the course of uplifts of the Qinghai-Tibetan Plateau. Fluctuations of the ecogeographical environment and major hydrographic formation might have promoted contiguous range expansion of freshwater fish populations, whereas the geological barriers among drainages have resulted in the fragmentation of population and restricted the gene flow among populations.5. The significantly large negative F-s-value (-24.91, P < 0.01) of Fu's F-s-test and the unimodal mismatch distribution indicate that the species S. pylzovi underwent a sudden population expansion after the historical tectonic event of the Gonghe Movement.6. The results of this study indicate that each population from the Qinghai-Tibetan Plateau should be managed and conserved separately and that efforts should be directed towards preserving the genetic integrity of each group.
Resumo:
Inter-simple sequence repeat markers (ISSR) were used to estimate genetic diversity within and among 10 populations of Rhodiola chrysanthemifolia along Nianqingtangula Mountains and Brahmaputra, a species endemic to the Qinghai-Tibet Plateau and an endangered medicinal plant. Of the 100 primers screened, 13 produced highly polymorphic DNA fragments. Using these primers, 116 discernible DNA fragments were generated of which 104 (89.7%) were polymorphic, indicating substantial genetic diversity at the species level. Genetic diversity measured by the percentage of polymorphic bands (PPB) at the population level ranged from 21.97% to 48.8%. Analysis of molecular variance (AMOVA) showed that the genetic variation was found mainly among populations (77.3%), but no regional differentiation was discernible. Variance within populations was only 22.7%. The main factor responsible for this high level of differentiation among populations is probably the historical geographical and genetic isolation of populations in a harsh mountainous environment. Concerning the management of R. chrysanthemifolia, the high genetic differentiation of populations indicates the necessity of conserving the maximum possible number of populations. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Swertia przewalskii Pissjauk. (Gentianaceae) is a critically endangered and endemic plant of the Qinghai-Tibet Plateau in China. RAPD and ISSR analyses were carried out on a total of 63 individuals to assess the extent of genetic variation in the remaining three populations. Percentage of polymorphic bands was 94% (156 bands) for RAPD and 96% (222 bands) for ISSR. A pairwise distance measure calculated from the RAPD and ISSR data was used as input for analysis of molecular variance (AMOVA). AMOVA indicated that a high proportion of the total genetic variation (52% for RAPD and 56% for ISSR) was found among populations; pairwise Phi(ST) comparisons showed that the three populations examined were significantly different (p < 0.001). Significant genetic differentiation was found based on different measures (AMOVA and Hickory theta(B)) in S. przewalskii (0.52 on RAPD and 0.56 on ISSR; 0.46 on RAPD and 0.45 on ISSR). The differentiation of the populations corresponded to low average gene flow (0.28 based on RAPD and 0.31 based on ISSR), whereas genetic distance-based clustering and coalescent-based assignment analyses revealed significant genetic isolation among populations. Our results indicate that genetic diversity is independent of population size. We conclude that although sexual reproduction and gene flow between populations of S. przewalskii are very limited, they have preserved high levels of genetic diversity. The main factors responsible for the high level of difference among populations are the isolation and recent fragmentation under human disturbance.