994 resultados para Genes del Tumor de Wilms
Resumo:
Diphenism in social bees is essentially contingent on nutrient-induced cellular and systemic physiological responses resulting in divergent gene expression patterns. Analyses of juvenile hormone (JH) titers and functional genomics assays of the insulin-insulin-like signaling (IIS) pathway and its associated branch, target-of-rapamycin (TOR), revealed systemic responses underlying honey bee (Apis mellifera) caste development. Nevertheless, little attention has been paid to cellular metabolic responses. Following up earlier investigations showing major caste differences in oxidative metabolism and mitochondrial physiology, we herein identified honey bee homologs of hypoxia signaling factors, HIF alpha/Sima, HIF beta/Tango and PHD/Fatiga and we investigated their transcript levels throughout critical stages of larval development. Amsima, Amtango and Amfatiga showed correlated transcriptional activity, with two peaks of occurring in both queens and workers, the first one shortly after the last larval molt and the second during the cocoon-spinning phase. Transcript levels for the three genes were consistently higher in workers. As there is no evidence for major microenvironmental differences in oxygen levels within the brood nest area, this appears to be an inherent caste character. Quantitative PCR analyses on worker brain, ovary, and leg imaginal discs showed that these tissues differ in transcript levels. Being a highly conserved pathway and linked to IIS/TOR, the hypoxia gene expression pattern seen in honey bee larvae denotes that the hypoxia pathway has undergone a transformation, at least during larval development, from a response to environmental oxygen concentrations to an endogenous regulatory factor in the diphenic development of honey bee larvae. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Object. The goal of this paper is to analyze the extension and relationships of glomus jugulare tumor with the temporal bone and the results of its surgical treatment aiming at preservation of the facial nerve. Based on the tumor extension and its relationships with the facial nerve, new criteria to be used in the selection of different surgical approaches are proposed. Methods. Between December 1997 and December 2007, 34 patients (22 female and 12 male) with glomus jugulare tumors were treated. Their mean age was 48 years. The mean follow-up was 52.5 months. Clinical findings included hearing loss in 88%, swallowing disturbance in 50%, and facial nerve palsy in 41%. Magnetic resonance imaging demonstrated a mass in the jugular foramen in all cases, a mass in the middle ear in 97%, a cervical mass in 85%, and an intradural mass in 41%. The tumor was supplied by the external carotid artery in all cases, the internal carotid artery in 44%, and the vertebral artery in 32%. Preoperative embolization was performed in 15 cases. The approach was tailored to each patient, and 4 types of approaches were designed. The infralabyrinthine retrofacial approach (Type A) was used in 32.5%; infralabyrinthine pre- and retrofacial approach without occlusion of the external acoustic meatus (Type B) in 20.5%; infralabyrinthine pre- and retrofacial approach with occlusion of the external acoustic meatus (Type C) in 41 W. and the infralabyrinthine approach with transposition of the facial nerve and removal of the middle ear structures (Type D) in 6% of the patients. Results. Radical removal was achieved in 91% of the cases and partial removal in 9%. Among 20 patients without preoperative facial nerve dysfunction, the nerve was kept in anatomical position in 19 (95%), and facial nerve function was normal during the immediate postoperative period in 17 (85%). Six patients (17.6%) had a new lower cranial nerve deficit, but recovery of swallowing function was adequate in all cases. Voice disturbance remained in all 6 cases. Cerebrospinal fluid leakage occurred in 6 patients (17.6%), with no need for reoperation in any of them. One patient died in the postoperative period due to pulmonary complications. The global recovery, based on the Karnofsky Performance Scale (KPS), was 100% in 15% of the patients, 90% in 45%, 80% in 33%, and 70% in 6%. Conclusions. Radical removal of glomus jugulare tumor can be achieved without anterior transposition of the facial nerve. The extension of dissection, however, should be tailored to each case based on tumor blood supply, preoperative symptoms, and tumor extension. The operative field provided by the retrofacial infralabyrinthine approach, or the pre- and retrofacial approaches. with or without Closure of the external acoustic meatus, allows a wide exposure of the jugular foramen area. Global functional recovery based on the KPS is acceptable in 94% of the patients. (DOI: 10.3171/2008.10.JNS08612)
Resumo:
We used high-resolution SNP genotyping to identify regions of genomic gain and loss in the genomes of 212 medulloblastomas, malignant pediatric brain tumors. We found focal amplifications of 15 known oncogenes and focal deletions of 20 known tumor suppressor genes (TSG), most not previously implicated in medulloblastoma. Notably, we identified previously unknown amplifications and homozygous deletions, including recurrent, mutually exclusive, highly focal genetic events in genes targeting histone lysine methylation, particularly that of histone 3, lysine 9 (H3K9). Post-translational modification of histone proteins is critical for regulation of gene expression, can participate in determination of stem cell fates and has been implicated in carcinogenesis. Consistent with our genetic data, restoration of expression of genes controlling H3K9 methylation greatly diminishes proliferation of medulloblastoma in vitro. Copy number aberrations of genes with critical roles in writing, reading, removing and blocking the state of histone lysine methylation, particularly at H3K9, suggest that defective control of the histone code contributes to the pathogenesis of medulloblastoma.
Resumo:
Glioblastoma multiforme (GBM) is a highly invasive and radioresistant brain tumor. Aiming to study how glioma cells respond to gamma-rays in terms of biological processes involved in cellular responses, we performed experiments at cellular context and gene expression analysis in U343-MG-a GBM cells irradiated with 1 Gy and collected at 6 h post-irradiation. The survival rate was approximately 61% for 1 Gy and was completely reduced at 16 Gy. By performing the microarray technique, 859 cDNA clones were analyzed. The Significance Analysis of Microarray algorithm indicated 196 significant expressed genes (false discovery rate (FDR) = 0.42%): 67 down-regulated and 97 up-regulated genes, which belong to several classes: metabolism, adhesion/cytoskeleton, signal transduction, cell cycle/apoptosis, membrane transport, DNA repair/DNA damage signaling, transcription factor, intracellular signaling, and RNA processing. Differential expression patterns of five selected genes (HSPA9B, INPP5A, PIP5K1A, FANCG, and TPP2) observed by the microarray analysis were further confirmed by the quantitative real time RT-PCR method, which demonstrated an up-regulation status of those genes. These results indicate a broad spectrum of biological processes (which may reflect the radio-resistance of U343 cells) that were altered in irradiated glioma cells, so as to guarantee cell survival.
Resumo:
We have performed cDNA microarray analyses to identify gene expression differences between highly invasive glioblastoma multiforme (GBM) and typically benign pilocytic astrocytomas (PA). Despite the significant clinical and pathological differences between the 2 tumor types, only 63 genes were found to exhibit 2-fold or greater overexpression in GBM as compared to PA. Forty percent of these genes are related to the regulation of the cell cycle and mitosis. QT-PCR validation of 6 overexpressed genes: MELK, AUKB, ASPM, PRC1, IL13RA2 and KIAA0101 confirmed at least a 5-fold increase in the average expression levels in GBM. Maternal embryonic leucine zipper kinase (MELK) exhibited the most statistically significant difference. A more detailed investigation of MELK expression was undertaken to study its oncogenic relevance. In the examination of more than 100 tumors of the central nervous system, we found progressively higher expression of MELK with astrocytoma grade and a noteworthy uniformity of high level expression in GBM. Similar level of overexpression was also observed in medulloblastoma. We found neither gene promoter hypomethylation nor amplification to be a factor in MELK expression, but were able to demonstrate that MELK knockdown in malignant astrocytoma cell lines caused a reduction in proliferation and anchorage-independent growth in in vitro assays. Our results indicate that GBM and PA differ by the expression of surprisingly few genes. Among them, MELK correlated with malignancy grade in astrocytomas and represents a therapeutic target for the management of the most frequent brain tumors in adult and children. (C) 2007 Wiley-Liss, Inc.
Resumo:
Cytogenetic Studies of childhood ovary tumors have been poorly described. in the present article, the cytogenetic findings of an ovarian teratoma with malignant germ cell (yolk-sac) component occurring in an 8-year-old female are detailed. GTG-banding showed a karyotype of 46,XX, t(3;20)(q27;q13.3) [4]/46,XX, del3q27 [3]/46,XX [30]. Previous Studies have demonstrated common sites of loss of heterozygosity at 3q27-q28 region in different types of cancer, suggesting the presence of tumor Suppressor genes within this region. Pediatr Blood Cancer 2009;52:398-401. (C) 2008 Wiley-Liss, Inc.
Resumo:
Context: MicroRNAs (miRNAs) are small noncoding RNAs, functioning as antisense regulators of gene expression by targeting mRNA and contributing to cancer development and progression. More than 50% of miRNA genes are located in cancer-associated genomic regions or in fragile sites of the genome. Objective: The aim of the study was to analyze the differential expression of let-7a, miR-15a, miR-16, miR-21, miR-141, miR-143, miR-145, and miR-150 in corticotropinomas and normal pituitary tissue and verify whether their profile of expression correlates with tumor size or remission after treatment. Material and Methods: ACTH-secreting pituitary tumor samples were obtained during transphenoidal surgery from patients with Cushing disease and normal pituitary tissues from autopsies. The relative expression of miRNAs was measured by real-time PCR using RNU44 and RNU49 as endogenous controls. Relative quantification of miRNA expression was calculated using the 2(-Delta Delta Ct) method. Results: We found underexpression of miR-145 (2.0-fold; P = 0.04), miR-21 (2.4-fold; P = 0.004), miR-141 (2.6-fold; P = 0.02), let-7a (3.3-fold; P = 0.003), miR-150 (3.8-fold; P = 0.04), miR-15a (4.5-fold; P = 0.03), miR-16 (5.0-fold; P = 0.004), and miR-143 (6.4-fold; P = 0.004) in ACTH-secreting pituitary tumors when compared to normal pituitary tissues. There were no differences between miRNA expression and tumor size as well as miRNA expression and ratio of remission after surgery, except in patients presenting lower miR-141 expression who showed a better chance of remission. Conclusion: Our results support the possibility that altered miRNA expression profile might be involved in corticotrophic tumorigenesis. However, the lack of knowledge about miRNA target genes postpones full understanding of the biological functions of down-regulated or up-regulated miRNAs in corticotropinomas. (J Clin Endocrinol Metab 94: 320-323, 2009)
Resumo:
Background: Human T-lymphotropic virus 1 (HTLV-1) is associated with the T-cell malignancy known as adult T-cell leukemia! lymphoma (ATLL) and with a disorder called HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Currently, the treatment of these diseases is based on symptom relief. RNA interference (RNAi) technology has been described as an efficient mechanism for development of new therapeutic methods. Thus, the aim of this study was to evaluate the inhibition of HTLV-1 structural proteins using short hairpin RNAs (shRNAs) expressed by non-viral vectors. Materials and Methods: Reporter plasmids that express enhanced green fluorescent protein-Gag (EGFP-Gag) and EGFP-Env fusion proteins and vectors that express shRNAs corresponding to the HTLV-1 gag and env genes were constructed. shRNA vectors and reporter plasmids were simultaneously transfected into HEK 293 cells. Results: Fluorescence microscopy, flow cytometry and real-time PCR showed that shRNAs were effective in inhibiting the fusion proteins. Conclusion: These shRNAs are effective against the expression of structural genes and may provide an approach to the development of new therapeutic agents.
Resumo:
Infection by Helicobacter pylori is associated with the development of several gastroduodenal diseases, including gastritis, peptic ulcer disease (gastric ulcers and duodenal ulcers), and gastric adenocarcinoma. Although a number of putative virulence factors have been reported for H. pylori, there are conflicting results regarding their association with specific H. pylori-related diseases. In this work, we investigated the presence of virB11 and cagT, located in the left half of the cag pathogenicity island (cagPAI), and the jhp917-jhp918 sequences, components of the dupA gene located in the plasticity zone of H. pylori, in Brazilian isolates of H. pylori. We also examined the association between these genes and H. pylori-related gastritis, peptic ulcer disease, and gastric and duodenal ulcers in an attempt to identify a gene marker for clinical outcomes related to infection by H. pylori. The cagT gene was associated with peptic ulcer disease and gastric ulcers, whereas the virB11 gene was detected in nearly all of the samples. The dupA gene was not associated with duodenal ulcers or any gastroduodenal disease here analyzed. These results suggest that cagT could be a useful prognostic marker for the development of peptic ulcer disease in the state of Sao Paulo, Brazil. They also indicate that cagT is associated with greater virulence and peptic ulceration, and that this gene is an essential component of the type IV secretion system of H. pylori.
Resumo:
Context: Physiological activation of the prokineticin pathway has a critical role in olfactory bulb morphogenesis and GnRH secretion in mice. Objective: To investigate PROK2 and PROKR2 mutations in patients with hypogonadotropic hypogonadism (HH) associated or not with olfactory abnormalities. Design: We studied 107 Brazilian patients with HH (63 with Kallmann syndrome and 44 with normosmic HH) and 100 control individuals. The coding regions of PROK2 and PROKR2 were amplified by PCR followed by direct automatic sequencing. Results: In PROK2, two known frameshift mutations were identified. Two brothers with Kallmann syndrome harbored the homozygous p. G100fsX121 mutation, whereas one male with normosmic HH harbored the heterozygous p. I55fsX56 mutation. In PROKR2, four distinct mutations (p. R80C, p. Y140X, p. L173R, and p. R268C) were identified in five patients with Kallmann syndrome and in one patient with normosmic HH. These mutations were not found in the control group. The p. R80C, p. L173R, and p. R268C missense mutations were identified in the heterozygous state in the HH patients and in their asymptomatic first-degree relatives. In addition, nomutations of FGFR1, KAL1, GnRHR, KiSS-1, or GPR54 were identified in these patients. Notably, the new nonsense mutation (p. Y140X) was identified in the homozygous state in an anosmic boy with micropenis, bilateral cryptorchidism, and high-arched palate. His asymptomatic parents were heterozygous for this severe defect. Conclusion: We expanded the repertoire of PROK2 and PROKR2 mutations in patients with HH. In addition, we show that PROKR2 haploinsufficiency is not sufficient to cause Kallmann syndrome or normosmic HH, whereas homozygous loss-of-function mutations either in PROKR2 or PROK2 are sufficient to cause disease phenotype, in accordance with the Prokr2 and Prok2 knockout mouse models.
Resumo:
TP73 encodes for two proteins: full-length TAp73 and Delta Np73, which have little transcriptional activity and exert dominant-negative function towards TP53 and TAp73. We compared TATP73 and Delta NTP73 expression in acute myeloid leukaemia (AML) samples and normal CD34(+) progenitors. Both forms were more highly expressed in leukaemic cells. Amongst AML blasts, TATP73 was more expressed in AML harbouring the recurrent genetic abnormalities (RGA): PML-RARA, RUNX1-RUNX1T1 and CBFB-MYH11, whereas higher Delta NTP73 expression was detected in non-RGA cases. TP53 expression did not vary according to Delta NTP73/TATP73 expression ratio. Leukaemic cells with higher Delta NTP73/TATP73 ratios were significantly more resistant to cytarabine-induced apoptosis.
Resumo:
Since the discovery of RNAi technology, several functional genomic and disease therapy studies have been conducted using this technique in the field of oncology and virology. RNAi-based antiviral therapies are being studied for the treatment of retroviruses such as HIV-1. These studies include the silencing of regulatory, infectivity and structural genes. The HTLV-1 structural genes are responsible for the synthesis of proteins involved in the entry, assembly and release of particles during viral infection. To examine the possibility of silencing HTLV-1 genes gag and env by RNA interference technology, these genes were cloned into reporter plasmids. These vectors expressed the target mRNAs fused to EGFP reporter genes. Three small interference RNAs (siRNAs) corresponding to gag and three corresponding to env were designed to analyze the effect of silencing by RNAi technology. The plasmids and siRNAs were co-transfected into HEK 293 cells. The results demonstrated that the expression of the HTLV-1 gag and env genes decreased significantly in vitro. Thus, siRNAs can be used to inhibit HTLV-1 structural genes in transformed cells, which could provide a tool for clarifying the roles of HTLV-1 structural genes, as well as a therapy for this infection. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Impaired DNA repair efficiency in systematic lupus erythematosus (SLE) patients has been reported ill some studies, mainly regarding the repair of oxidative damage, but little is known about repair kinetics towards primarily single-stranded DNA breaks. In the present study, we aimed to investigate: (a) the efficiency of SLE peripheral blood leucocytes in repairing DNA damage induced by ionizing radiation and (b) the association of DNA repair gene (XRCC1 Arg399Gln, XRCC3 Thr241Met and XRCC4 Ile401Thr) polymorphisms in SLE patients, considering the whole group, or stratified sub-groups according to clinical and laboratory features. A total of 163 SLE patients and 125 healthy control were studied. The kinetics of DNA strand break repair was evaluated by the comet assay, and genotyping for DNA repair genes was performed by PCR-RFLP. Compared with controls. SLE leucocytes exhibited decreased efficiency of DNA repair evaluated at 30 min following irradiation. A significant association with DNA repair gene polymorphisms was not observed for the whole group of SLE patients; however, the XRCC1Arg399Gln polymorphism was associated with the presence of anti-dsDNA antibody. The concomitance of two DNA repair polymorphic sites was associated with the presence of neuropsychiatric manifestations and antiphospholipid antibody syndrome. Taken together, these results indicated that SLE leucocytes repair less efficiently the radiation-induced DNA damage, and DNA repair polymorphic sites may predispose to the development of particular clinical and laboratory features. Lupus (2008) 17, 988-995.