998 resultados para Genes, env


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hypothalamus is a key central controller of energy homeostasis and is the source and/or site of action of many neuropeptides involved in this process. The aim of this study was to isolate hypothalamic genes differentially expressed between lean and obese Psammomys obesus, a polygenic animal model of obesity and type 2 diabetes. Differential display PCR was used to compare hypothalamic gene expression profiles of lean and healthy, obese and hyperinsulinemic, and obese, diabetic P. obesus in both the fed and fasted states. We conducted differential display with 180 separate primer combinations to amplify approximately 9000 expressed transcripts. Sixty differentially expressed bands were excised. Taqman PCR was performed on 36 of these transcripts to confirm differential gene expression in a larger sample population. Of these 36 transcripts, 9 showed homology to known genes, and 27 were considered to be novel sequences. Gene expression profiles for two of these genes are presented here. In conclusion, differential display PCR was successfully used to isolate several transcripts that may be involved in the central regulation of energy balance. We are currently conducting numerous studies to further investigate the role of these genes in the development of obesity in P. obesus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are seven mammalian signal transducer and activator of transcription (Stat) proteins that act downstream of cytokine and growth factor receptors to mediate rapid changes in gene expression. The mammalian Stat5a and Stat5b genes show high sequence identity and lie adjacent in a head-to-head configuration next to the Stat3 gene, apparently the result of a relatively recent mammal-specific gene duplication event. We have identified and characterized two stat5 homologues that are expressed in zebrafish, named stat5.1 and stat5.2. The stat5.1 gene shows a high level of conservation with the single stat5 gene found in other teleosts and lies next to the stat3 gene, in the same relative orientation as the mammalian Stat5b gene. In contrast, the stat5.2 gene lies on a different chromosome to stat5.1 and stat3, and has diverged from the stat5 genes of other teleosts, with no apparent orthologue. Together, these data suggest that the ancestral Stat5 gene has undergone two independent gene duplication events to generate a stat5.2 paralogue in zebrafish and a Stat5a paralogue in mammals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nucleotide sequence data were used to re-examine systematic relationships and species boundaries within the genus Cherax from eastern Australia. Partial sequences were amplified from the 12S (~365 bp) and 16S (~545 bp) rRNA mitochondrial gene regions. Levels of intra- and inter-specific divergence for Cherax species were very similar between the two gene regions and similar to that reported for other freshwater crayfish for 16S rRNA. Phylogenetic analyses using the combined data provided strong support for a monophyletic group containing 11 eastern Australian species and comprising three well-defined species-groups: the 'C. destructor' group containing three species, the 'C. cairnsensis' group containing four species and the 'C. cuspidatus' group containing two species. Cherax dispar and C. robustus are distinct from all other species and each other. In addition, two northern Australian and a New Guinean species were placed in the 'Astaconephrops' group, which is the sister-group to the eastern Australian Cherax lineage. Several relationships were clarified, including: the status of northern and southern C. cuspidatus as separate species; a close relationship between C. cairnsensis and C. depressus; the validity of C. rotundus and C. setosus as separate species and their close affinities with C. destructor; and the distinctiveness of the northern forms of Cherax. The analysis of the 12S rRNA and 16S rRNA data is highly concordant with the results of previous allozyme studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhabdomyosarcomas (RMS) are highly aggressive tumors that are thought to arise as a consequence of the regulatory disruption of the growth and differentiation of skeletal muscle progenitor cells. Normal myogenesis is characterized by the expression of the myogenic regulatory factor gene family but, despite their expression in RMS, these tumor cells fail to complete the latter stages of myogenesis. The RMS cell line RD-A was treated with 12-O-tetradecanoylphorbol-13-acetate to induce differentiation and cultured for 10 days. RNA was extracted on days 1, 3, 6, 8 and 10. A human skeletal muscle cDNA microarray was developed and used to analyze the global gene expression of RMS tumors over the time-course of differentiation. As a comparison, the genes identified were subsequently examined during the differentiated primary human skeletal muscle cultures. Prothymosin alpha (PTMA), and translocase of inner mitochondrial membrane 10 (Tim10), two genes not previously implicated in RMS, showed reduced expression during differentiation. Marked differences in the expression of PTMA and Tim10 were observed during the differentiation of human primary skeletal muscle cells. These results identify several new genes with potential roles in the myogenic arrest present in rhabdomyosarcoma. PTMA expression in RMS biopsy samples might prove to be an effective diagnostic marker for this disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ingestion of carbohydrate during exercise may blunt the stimulation of fat oxidative pathways by raising plasma insulin and glucose concentrations and lowering plasma free fatty acid (FFA) levels, thereby causing a marked shift in substrate oxidation. We investigated the effects of a single 2-h bout of moderate-intensity exercise on the expression of key genes involved in fat and carbohydrate metabolism with or without glucose ingestion in seven healthy untrained men (22.7 ± 0.6 yr; body mass index: 23.8 ± 1.0 kg/m2; maximal O2 consumption: 3.85 ± 0.21 l/min). Plasma FFA concentration increased during exercise (P < 0.01) in the fasted state but remained unchanged after glucose ingestion, whereas fat oxidation (indirect calorimetry) was higher in the fasted state vs. glucose feeding (P < 0.05). Except for a significant decrease in the expression of pyruvate dehydrogenase kinase-4 (P < 0.05), glucose ingestion during exercise produced minimal effects on the expression of genes involved in carbohydrate utilization. However, glucose ingestion resulted in a decrease in the expression of genes involved in fatty acid transport and oxidation (CD36, carnitine palmitoyltransferase-1, uncoupling protein 3, and 5'-AMP-activated protein kinase-α2; P < 0.05). In conclusion, glucose ingestion during exercise decreases the expression of genes involved in lipid metabolism rather than increasing genes involved in carbohydrate metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Our objective was to delineate the potential role of adipogenesis in insulin resistance and type 2 diabetes. Obesity is characterized by an increase in adipose tissue mass resulting from enlargement of existing fat cells (hypertrophy) and/or from increased number of adipocytes (hyperplasia). The inability of the adipose tissue to recruit new fat cells may cause ectopic fat deposition and insulin resistance.

Research Methods and Procedures: We examined the expression of candidate genes involved in adipocyte proliferation and/or differentiation [ CCAAT/enhancer-binding protein (C/EBP) alpha, C/EBPdelta, GATA domain-binding protein 3 (GATA3), C/EBPbeta, peroxisome proliferator-activated receptor (PPAR) gamma2, signal transducer and activator of transcription 5A (STAT5A), Wnt-10b, tumor necrosis factor alpha, sterol regulatory element-binding protein 1c (SREBP1c), 11 beta-hydroxysteroid dehydrogenase, PPARG angiopoietin-related protein (PGAR), insulin-like growth factor 1, PPARitalic gamma coactivator 1alpha, PPARitalic gamma coactivator 1beta, and PPARdelta] in subcutaneous adipose tissue from 42 obese individuals with type 2 diabetes and 25 non-diabetic subjects matched for age and obesity.

Results: Insulin sensitivity was measured by a 3-hour 80 mU/m2 per minute hyperinsulinemic glucose clamp (100 mg/dL). As expected, subjects with type 2 diabetes had lower glucose disposal (4.9 plusminus 1.9 vs. 7.5 plusminus 2.8 mg/min per kilogram fat-free mass; p < 0.001) and larger fat cells (0.90 plusminus 0.26 vs. 0.78 plusminus 0.17 mum; p = 0.04) as compared with obese control subjects. Three genes (SREBP1c, p < 0.01; STAT5A, p = 0.02; and PPARitalic gamma2, p = 0.02) had significantly lower expression in obese type 2 diabetics, whereas C/EBPbeta only tended to be lower (p = 0.07).

Discussion: This cross-sectional study supports the hypothesis that impaired expression of adipogenic genes may result in impaired adipogenesis, potentially leading to larger fat cells in subcutaneous adipose tissue and insulin resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The t(9;22) translocation is associated with more than 95% of cases of chronic myeloid leukemia. The resulting fusion of the BCR and ABL1 loci produces the constitutively active BCR/ABL1 tyrosine kinase. A wide range of signal transduction molecules are activated by BCR/ABL1, including MYC, PI-3 kinase, and different STAT molecules. In contrast, relatively few genes are known to be regulated by BCR/ABL1 at the level of transcription.

Materials and Methods: In an effort to better understand the transcriptional program activated by BCR/ABL1, we used cDNA microarrays to evaluate the relative expression of approximately 6450 human genes in U937 myelomonocytic cells expressing P210 BCR/ABL1 via a tetracycline-inducible promoter.

Results: We confirmed the previously reported up-regulation of the PIM1 and JUN oncogenes by BCR/ABL1. In addition, we identified 59 more genes up-regulated by BCR/ABL1. Interestingly, roughly one third of these were genes previously reported to be interferon (IFN)-responsive, including the OAS1, IFIT1, IFI16, ISGF3G, and STAT1 genes. An additional seven BCR/ABL1-regulated genes were found to be IFN-responsive in U937 cells. The expression profile also included genes encoding transcription factors, kinases, and signal transduction molecules, as well as genes regulating cell growth, differentiation, apoptosis, and cell adhesion, features previously suggested to be affected by BCR/ABL1.

Conclusion: These observations shed novel insight into the mechanism of BCR/ABL1 action and provide a range of targets for further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clustering is widely used in bioinformatics to find gene correlation patterns. Although many algorithms have been proposed, these are usually confronted with difficulties in meeting the requirements of both automation and high quality. In this paper, we propose a novel algorithm for clustering genes from their expression profiles. The unique features of the proposed algorithm are twofold: it takes into consideration global, rather than local, gene correlation information in clustering processes; and it incorporates clustering quality measurement into the clustering processes to implement non-parametric, automatic and global optimal gene clustering. The evaluation on simulated and real gene data sets demonstrates the effectiveness of the algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Notch signaling is essential for myogenesis and the regenerative potential of skeletal muscle: however, its regulation in human muscle is yet to be fully characterized. Increased expression of Notch3, Jagged1. Hes1, and Hes6 gene transcripts were observed during differentiation of cultured human skeletal muscle cells. Furthermore, significantly lower expressions of Notch1, Jagged1, Numb, and Delta-like 1 were evident in muscle biopsies from older men (60-75 years old) compared to muscle from younger men (18-25 years old). Importantly, with supervised resistance exercise training, expression of Notch1 and Hes6 genes were increased and Delta-like 1 and Numb expression were decreased. The differences in Notch expression between the age groups were no longer evident following training. These results provide further evidence to support the role of Notch in the impaired regulation of muscle mass with age and suggest that some of the benefits provided by resistance training may be mediated through the Notch signaling pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine whether preexercise muscle glycogen content influences the transcription of several early-response genes involved in the regulation of muscle growth, seven male strength-trained subjects performed one-legged cycling exercise to exhaustion to lower muscle glycogen levels (Low) in one leg compared with the leg with normal muscle glycogen (Norm) and then the following day completed a unilateral bout of resistance training (RT). Muscle biopsies from both legs were taken at rest, immediately after RT, and after 3 h of recovery. Resting glycogen content was higher in the control leg (Norm leg) than in the Low leg (435 ± 87 vs. 193 ± 29 mmol/kg dry wt; P < 0.01). RT decreased glycogen content in both legs (P < 0.05), but postexercise values remained significantly higher in the Norm than the Low leg (312 ± 129 vs. 102 ± 34 mmol/kg dry wt; P < 0.01). GLUT4 (3-fold; P < 0.01) and glycogenin mRNA abundance (2.5-fold; not significant) were elevated at rest in the Norm leg, but such differences were abolished after exercise. Preexercise mRNA abundance of atrogenes was also higher in the Norm compared with the Low leg [atrogin: 14-fold, P < 0.01; RING (really interesting novel gene) finger: 3-fold, P < 0.05] but decreased for atrogin in Norm following RT (P < 0.05). There were no differences in the mRNA abundance of myogenic regulatory factors and IGF-I in the Norm compared with the Low leg. Our results demonstrate that 1) low muscle glycogen content has variable effects on the basal transcription of select metabolic and myogenic genes at rest, and 2) any differences in basal transcription are completely abolished after a single bout of heavy resistance training. We conclude that commencing resistance exercise with low muscle glycogen does not enhance the activity of genes implicated in promoting hypertrophy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abscisic acid (ABA) has been implicated in determining the outcome of interactions between many plants and their pathogens. We had previously shown that increased concentrations of ABA within leaves of Arabidopsis induced susceptibility towards an avirulent strain of Pseudomonas syringae pathovar (pv.) tomato. We now show that ABA induces susceptibility via suppression of the accumulation of components crucial for a resistance response. Lignin and salicylic acid concentrations in leaves were increased during a resistant interaction but reduced when plants were treated with ABA. The reduction in lignin and salicylic acid production was independent of the development of the hypersensitive response (HR), indicating that, in this host-pathogen system, HR is not required for resistance. Genome-wide gene expression analysis using microarrays showed that treatment with ABA suppressed the expression of many defence-related genes, including those important for phenylpropanoid biosynthesis and those encoding resistance-related proteins. Together, these results show that resistance induction in Arabidopsis to an avirulent strain of P. syringae pv. tomato is regulated by ABA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The natriuretic peptide (NP) family consists of multiple subtypes in teleosts, including atrial, B-type, ventricular, and C-type NPs (ANP, BNP, VNP, CNP-1–4, respectively), but only ANP, BNP, CNP-3, and CNP-4 have been identified in tetrapods. As part of understanding the molecular evolution of NPs in the tetrapod lineage, we identified NP genes in the chicken genome. Previously, only BNP and CNP-3 have been identified in birds, but we characterized two new chicken NP genes by cDNA cloning, synteny and phylogenetic analyses. One gene is an orthologue of CNP-1, which has only ever been reported in teleostei and bichir. The second gene could not be assigned to a particular NP subtype because of high sequence divergence and was named renal NP (RNP) due to its predominant expression in the kidney. CNP-1 mRNA was only detected in brain, while CNP-3 mRNA was expressed in kidney, heart, and brain. In the developing embryo, BNP and RNP transcripts were most abundant 24 h post-fertilization, while CNP mRNA increased in a stage-dependant manner. Synthetic chicken RNP stimulated an increase in cGMP production above basal level in chicken kidney membrane preparations and caused a potent dose-dependant vasodilation of pre-constricted dorsal aortic rings. From conserved chromosomal synteny, we propose that the CNP-4 and ANP genes have been lost in chicken, and that RNP may have evolved from a VNP-like gene. Furthermore, we have demonstrated for the first time that CNP-1 is retained in the tetrapod lineage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AMP-activated protein kinase (AMPK) has recently emerged as a key signaling protein in skeletal muscle, coordinating the activation of both glucose and fatty acid metabolism in response to increased cellular energy demand. To determine whether AMPK signaling may also regulate gene transcription in muscle, rats were given a single subcutaneous injection (1 mg/g) of the AMP analog 5-aminoimidazole-4-carboxamide-1-ß-D-ribonucleoside (AICAR). AICAR injection activated (P < 0.05) AMPK-α2 (~2.5-fold) and transcription of the uncoupling protein-3 (UCP3, ~4-fold) and hexokinase II (HKII, ~10-fold) genes in both red and white skeletal muscle. However, AICAR injection also elicited (P < 0.05) an acute drop (60%) in blood glucose and a sustained (2-h) increase in blood lactate, prompting concern regarding the specificity of AICAR on transcription. To maximize AMPK activation in muscle while minimizing potential systemic counterregulatory responses, a single-leg arterial infusion technique was employed in fully conscious rats. Relative to saline-infused controls, single-leg arterial infusion of AICAR (0.125, 0.5, and 2.5 µg · g-1 · min-1 for 60 min) induced a dose-dependent increase (2- to 4-fold, P < 0.05) in UCP3 and HKII transcription in both red and white skeletal muscle. Importantly, AICAR infusion activated transcription only in muscle from the infused leg and had no effect on blood glucose or lactate levels. These data provide evidence that AMPK signaling is linked to the transcriptional regulation of select metabolic genes in skeletal muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined the actions of 17β-estradiol (E2) and progesterone on the regulation of the peroxisome proliferator-activated receptors (PPARα and PPARγ) family of nuclear transcription factors and the mRNA abundance of key enzymes involved in fat oxidation, in skeletal muscle. Specifically,
carnitine palmitoyltransferase I (CPT I), β-3-hydroxyacyl CoA dehydrogenase (β-HAD), and pyruvate dehydrogenase kinase 4 (PDK4) were examined. Sprague–Dawley rats were ovariectomized and treated with placebo (Ovx), E2, progesterone, or both hormones in combination (E+P). Additionally,
sham-operated rats were treated with placebo (Sham) to serve as controls. Hormone (or vehicle only) delivery was via time release pellets inserted at the time of surgery, 15 days prior to analysis. E2 treatment increased PPARα mRNA expression and protein content (P<0·05), compared with Ovx treatment. E2 also resulted in upregulated mRNA of CPT I and PDK4 (P<0·05). PPARγ mRNA expression was also increased (P<0·05) by E2 treatment, although protein content remained unaltered. These data
demonstrate the novel regulation of E2 on PPARα and genes encoding key proteins that are pivotal in regulating skeletal muscle lipid oxidative flux.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in dietary macronutrient intake alter muscle and blood substrate availability and are important for regulating gene expression. However, few studies have examined the effects of diet manipulation on gene expression in human skeletal muscle. The aim of this study was to quantify the extent to which altering substrate availability impacts on subsequent mRNA abundance of a subset of carbohydrate (CHO)- and fat-related genes. Seven subjects consumed either a low- (LOW; 0.7 g/kg body mass CHO) or high- (HIGH; 10 g/kg body mass CHO) CHO diet for 48 h after performing an exhaustive exercise bout to deplete muscle glycogen stores. After intervention, resting muscle and blood samples were taken. Muscle was analyzed for the gene abundances of GLUT4, glycogenin, pyruvate dehydrogenase kinase-4 (PDK-4), fatty acid translocase (FAT/CD36), carnitine palmitoyltransferase I (CPT I), hormone-sensitive lipase (HSL), β-hydroxyacyl-CoA dehydrogenase (΄β-HAD), and uncoupling binding protein-3 (UCP3), and blood samples for glucose, insulin, and free fatty acid (FFA) concentrations. Glycogen-depleting exercise and HIGH-CHO resulted in a 300% increase in muscle glycogen content (P < 0.001) relative to the LOW-CHO condition. FFA concentrations were twofold higher after LOW- vs. HIGH-CHO (P < 0.05). The exercise-diet manipulation exerted a significant effect on transcription of all carbohydrate-related genes, with an increase in GLUT4 and glycogenin mRNA abundance and a reduction in PDK-4 transcription after HIGH-CHO (all P < 0.05). FAT/CD36 (P < 0.05) and UCP3 (P < 0.01) gene transcriptions were increased following LOW-CHO. We conclude that 1) there was a rapid capacity for a short-term exercise and diet intervention to exert coordinated changes in the mRNA transcription of metabolic related genes, and 2) genes involved in glucose regulation are increased following a high-carbohydrate diet.