978 resultados para GF AAS
Resumo:
Il lavoro svolto nella zona di Vareš, in particolare nella zona del lago di Veovača ha investigato diverse matrici ambientali (sedimenti, suoli, acque) per valutare le loro caratteristiche e la loro qualità. Nella zona è stata presente in passato attività estrattiva e di lavorazione dei minerali estratti, da qui la necessità di questo studio esplorativo. Il lavoro svolto si divide in tre fasi: campionamento, svolto in quattro giorni passati in campagna; analisi dei campioni raccolti e interpretazione dei risultati. Sono state campionate acque e sedimenti in punti interni al lago, altri in corrispondenza delle sue sponde e punti lungo la diga. Sul materiale solido sono state svolte analisi di spettrometria di fluorescenza a raggi X, mentre sulle acque sono state applicate tecniche di spettrometria di assorbimento atomico (AAS), spettrometria di emissione al plasma induttivamente accoppiato (ICP-AES) e cromatografia ionica oltre che a misure di parametri chimico-fisici in campo. Sono stati poi valutati i risultati, attraverso il confronto con banche dati di riferimento ed elaborazioni statistiche e grafiche. Si tratta di uno studio preliminare effettuato su un piccolo numero di campioni e perciò solo indicativo e non in grado di fornire risposte definitive sulla condizione ambientale dell'area. Tuttavia queste prime informazioni consentono di delineare un quadro nel quale future indagini potranno approfondire aspetti e problemi critici per la qualità ambientale.
Resumo:
Accurate experimental values for the free energies of hydration, or the free energies of solvation, of the H+, OH-, and H3O+ ions are of fundamental importance. By use of the most accurate value for the free energy of solvation of H+, the known value for the free energy of solvation of water, and the known values for the gas phase and aqueous phase deprotonation of water, the corresponding experimental free energy of solvation for OH- is −106.4 ± 0.5 kcal/mol. Similarly, by use of the known values for ΔGf 0 for H3O, H2O+, and OH-, the known values for ΔGs for H+ and OH-, and the known value for the aqueous phase autoionization of water, we obtain an experimental free energy of solvation value for H3O+ of −103.4 ± 0.5 kcal/mol. These values are in excellent agreement with the commonly accepted values and with the value for ΔGs(OH-) obtained from embedding clusters of OH-(H2O)n in a dielectric continuum.
Resumo:
Aerosols are known to have important effects on climate, the atmosphere, and human health. The extent of those effects is unknown and largely depend on the interaction of aerosols with water in the atmosphere. Ambient aerosols are complex mixtures of both inorganic and organic compounds. The cloud condensation nuclei (CCN) activities, hygroscopic behavior and particle morphology of a monocarboxylic amino acid (leucine) and a dicarboxylic amino acid (glutamic acid) were investigated. Activation diameters at various supersaturation conditions were experimentally determined and compared with Köhler theoretical values. The theory accounts for both surface tension and the limited solubility of organic compounds. It was discovered that glutamic acid aerosols readily took on water both when relative humidity was less than 100% and when the supersaturation condition was reached, while leucine did not show any water activation at those conditions. Moreover, the study also suggests that Köhler theory describes CCN activity of organic compounds well when only surface tension of the compound is taken into account and complete solubility is assumed. Single parameter ¿ was also computed using both CCN data and hygroscopic growth factor (GF). The results of ¿ range from 0.17 to 0.53 using CCN data and 0.09 to 0.2 using GFs. Finally, the study suggests that during the water-evaporation/particle-nucleation process, crystallization from solution droplets takes place at different locations: for glutamic acid at the particles¿ center and leucine at the particles¿ boundary.
Resumo:
Faciogenital dysplasia or Aarskog-Scott syndrome (AAS) is an X-linked disorder characterized by craniofacial, skeletal, and urogenital malformations and short stature. Mutations in the only known causative gene FGD1 are found in about one-fifth of the cases with the clinical diagnosis of AAS. FGD1 is a guanine nucleotide exchange factor (GEF) that specifically activates the Rho GTPase Cdc42 via its RhoGEF domain. The Cdc42 pathway is involved in skeletal formation and multiple aspects of neuronal development. We describe a boy with typical AAS and, in addition, unilateral focal polymicrogyria (PMG), a feature hitherto unreported in AAS. Sequencing of the FGD1 gene in the index case and his mother revealed the presence of a novel mutation (1396A>G; M466V), located in the evolutionary conserved alpha-helix 4 of the RhoGEF domain. M466V was not found in healthy family members, in >300 healthy controls and AAS patients, and has not been reported in the literature or mutation databases to date, indicating that this novel missense mutation causes AAS, and possibly PMG. Brain cortex malformations such as PMG could be initiated by mutations in the evolutionary conserved RhoGEF domain of FGD1, by perturbing the signaling via Rho GTPases such as Cdc42 known to cause brain malformation.
Resumo:
OBJECT: Severe traumatic brain injury (TBI) imposes a huge metabolic load on brain tissue, which can be summarized initially as a state of hypermetabolism and hyperglycolysis. In experiments O2 consumption has been shown to increase early after trauma, especially in the presence of high lactate levels and forced O2 availability. In recent clinical studies the effect of increasing O2 availability on brain metabolism has been analyzed. By their nature, however, clinical trauma models suffer from a heterogeneous injury distribution. The aim of this study was to analyze, in a standardized diffuse brain injury model, the effect of increasing the fraction of inspired O2 on brain glucose and lactate levels, and to compare this effect with the metabolism of the noninjured sham-operated brain. METHODS: A diffuse severe TBI model developed by Foda and Maramarou, et al., in which a 420-g weight is dropped from a height of 2 m was used in this study. Forty-one male Wistar rats each weighing approximately 300 g were included. Anesthesized rats were monitored by placing a femoral arterial line for blood pressure and blood was drawn for a blood gas analysis. Two time periods were defined: Period A was defined as preinjury and Period B as postinjury. During Period B two levels of fraction of inspired oxygen (FiO2) were studied: air (FiO2 0.21) and oxygen (FiO2 1). Four groups were studied including sham-operated animals: air-air-sham (AAS); air-O2-sham (AOS); air-air-trauma (AAT); and air-O2-trauma (AOT). In six rats the effect of increasing the FiO2 on serum glucose and lactate was analyzed. During Period B lactate values in the brain determined using microdialysis were significantly lower (p < 0.05) in the AOT group than in the AAT group and glucose values in the brain determined using microdialysis were significantly higher (p < 0.04). No differences were demonstrated in the other groups. Increasing the FiO2 had no significant effect on the serum levels of glucose and lactate. CONCLUSIONS: Increasing the FiO2 influences dialysate glucose and lactate levels in injured brain tissue. Using an FiO2 of 1 influences brain metabolism in such a way that lactate is significantly reduced and glucose significantly increased. No changes in dialysate glucose and lactate values were found in the noninjured brain.
Resumo:
Free radicals are present in cigarette smoke and can have a negative effect on human health by attacking lipids, nucleic acids, proteins and other biologically important species. However, because of the complexity of the tobacco smoke system and the dynamic nature of radicals, little is known about the identity of the radicals, and debate continues on the mechanisms by which those radicals are produced. In this study, acetyl radicals were trapped from the gas phase using 3-amino-2, 2, 5, 5- tetramethyl-proxyl (3AP) on solid support to form stable 3AP adducts for later analysis by high performance liquid chromatography (HPLC), mass spectrometry/tandem mass spectrometry (MS-MS/MS) and liquid chromatography- mass spectrometry (LC-MS). Simulations of acetyl radical generation were performed using Matlab and the Master Chemical Mechanism (MCM) programs. A range of 10- 150 nmol/cigarette of acetyl radical was measured from gas phase tobacco smoke of both commerial and research cigarettes under several different smoking conditions. More radicals were detected from the puff smoking method compared to continuous flow sampling. Approximately twice as many acetyl radicals were trapped when a GF/F particle filter was placed before the trapping zone. Computational simulations show that NO/NO2 reacts with isoprene, initiating chain reactions to produce a hydroxyl radical, which abstracts hydrogen from acetaldehyde to generate acetyl radical. With initial concentrations of NO, acetaldehyde, and isoprene in a real-world cigarette smoke scenario, these mechanisms can account for the full amount of acetyl radical detected experimentally. This study contributes to the overall understanding of the free radical generation in gas phase cigarette smoke.
Resumo:
Recent studies have indicated that parathyroid hormone-related protein (PTHrP) may have important actions in lactation, affecting the mammary gland, and also calcium metabolism in the newborn and the mother. However, there are as yet no longitudinal studies to support the notion of an endocrine role of this peptide during nursing. We studied a group of 12 nursing mothers, mean age 32 years, after they had been nursing for an average of 7 weeks (B) and also 4 months after stopping nursing (A). It was assumed that changes occurring between A and B correspond to the effect of lactation. Blood was assayed for prolactin (PRL), PTHrP (two-site immunoradiometric assay with sheep antibody against PTHrP(1-40), and goat antibody against PTHrP(60-72), detection limit 0.3 pmol/l), intact PTH (iPTH), ionized calcium (Ca2+), 25-hydroxyvitamin D3 (25(OH)D3) and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), alkaline phosphatase (alkP), as well as for creatinine (Cr), protein, phosphorus (P), and total calcium (Ca). Fasting 2-h urine samples were analyzed for Ca excretion (CaE) and renal phosphate threshold (TmP/GFR). PRL was significantly higher during lactation than after weaning (39 +/- 10 vs. 13 +/- 9 micrograms/l; p = 0.018) and so was PTHrP (2.8 +/- 0.35 vs. 0.52 +/- 0.04 pmol/l; p = 0.002), values during lactation being above the normal limit (1.3 pmol/l) in all 12 mothers. There was a significant correlation between PRL and PTHrP during lactation (r = 0.8, p = 0.002). Whole blood Ca2+ did not significantly change from A (1.20 +/- 0.02 mmol/l) to B (1.22 +/- 0.02, mmol/l), whereas total Ca corrected for protein (2.18 +/- 0.02 mmol/l) or uncorrected (2.18 +/- 0.02 mmol/l) significantly rose during lactation (2.31 +/- 0.02 mmol/l, p = 0.003 and 2.37 +/- 0.03 mmol/l, p = 0.002, respectively). Conversely, iPTH decreased during lactation (3.47 +/- 0.38 vs. 2.11 +/- 0.35 pmol/l, A vs. B, p = 0.02). Serum-levels of 25(OH)D3 and 1,25(OH)2D3 did not significantly change from A to B (23 +/- 2.3 vs. 24 +/- 1.9 ng/ml and 29.5 +/- 6.0 vs. 21.9 +/- 1.8 pg/ml, respectively). Both TmP/GFR and P were higher during lactation than after weaning (1.15 +/- 0.03 vs. 0.86 +/- 0.05 mmol/l GF, p = 0.003 and 1.25 +/- 0.03 vs. 0.96 +/- 0.05 mmol/l, p = 0.002, respectively) as was alkP (74.0 +/- 7.1 vs. 52.6 +/- 6.9 U/l, p = 0.003). CaE did not differ between A and B (0.015 +/- 0.003 vs. 0.017 +/- 0.003 mmol/l GF, A vs. B, NS). We conclude that lactation is accompanied by an increase in serum PRL. This is associated with a release of PTHrP into the maternal blood circulation. A rise in total plasma Ca ensues, probably in part by increased bone turnover as suggested by the elevation of alkP. PTH secretion falls, with a subsequent rise of TmP/GFR and plasma P despite high plasma levels of PTHrP.