982 resultados para G-matrix


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the temperature-dependent photoluminescence (PL) properties of polymeric graphite-like carbon nitride (g-C3N4) and a methodology for the determination of quantum efficiency along with the activation energy. The PL is shown to originate from three different pathways of transitions: sigma*-LP, pi*-LP, and pi*-pi, respectively. The overall activation energy is found to be similar to 73.58 meV which is much lower than the exciton binding energy reported theoretically but ideal for highly sensitive wide-range temperature sensing. The quantum yield derived from the PL data is 23.3%, whereas the absolute quantum yield is 5.3%. We propose that the temperature-dependent PL can be exploited for the evaluation of the temperature dependency of quantum yield as well as for temperature sensing. Our analysis further indicates that g-C3N4 is well-suited for wide-range temperature sensing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hepatic cell culture on a three-dimensional (3D) matrix or as a hepatosphere appears to be a promising in vitro biomimetic system for liver tissue engineering applications. In this study, we have combined the concept of a 3D scaffold and a spheroid culture to develop an in vitro model to engineer liver tissue for drug screening. We have evaluated the potential of poly(ethylene glycol)-alginate-gelatin (PAG) cryogel matrix for in vitro culture of human liver cell lines. The synthesized cryogel matrix has a flow rate of 7 mL/min and water uptake capacity of 94% that enables easy nutrient transportation in the in vitro cell culture. Youngs modulus of 2.4 kPa and viscoelastic property determine the soft and elastic nature of synthesized cryogel. Biocompatibility of PAG cryogel was evaluated through MTT assay of HepG2 and Huh-7 cells on matrices. The proliferation and functionality of the liver cells were enhanced by culturing hepatic cells as spheroids (hepatospheres) on the PAG cryogel using temperature-reversible soluble-insoluble polymer, poly(N-isopropylacrylamide) (PNIPAAm). Pore size of the cryogel above 100 mu m modulated spheroid size that can prevent hypoxia condition within the spheroid culture. Both the hepatic cells have shown a significant difference (P < 0.05) in terms of cell number and functionality when cultured with PNIPAAm. After 10 days of culture using 0.05% PNIPAAm, the cell number increased by 11- and 7-fold in case of HepG2 and Huh-7 cells, respectively. Similarly, after 10 days of hepatic spheroids culture on PAG cryogel, the albumin production, urea secretion, and CYP450 activity were significantly higher in case of culture with PNIPAAm. The developed tissue mass on the PAG cryogel in the presence of PNIPAAm possess polarity, which was confirmed using F-actin staining and by presence of intercellular bile canalicular lumen. The developed cryogel matrix supports liver cells proliferation and functionality and therefore can be used for in vitro and in vivo drug testing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of telomeric G-quadruplexes has been shown to inhibit telomerase activity. Indeed, a number of small molecules capable of p-stacking with G-tetrads have shown the ability to inhibit telomerase activity through the stabilization of G-quadruplexes. Curcumin displays a wide spectrum of medicinal properties ranging from anti-bacterial, anti-viral, anti-protozoal, anti-fungal and anti-inflammatory to anti-cancer activity. We have investigated the interactions of curcumin and its structural analogues with the human telomeric sequence AG(3)(T(2)AG(3))(3) under molecular crowding conditions. Experimental studies indicated the existence of a AG(3)(T(2)AG(3))(3)/curcumin complex with binding affinity of 0.72 x 10(6) M-1 under molecular crowding conditions. The results from UV-visible absorption spectroscopy, a fluorescent TO displacement assay, circular dichroism and molecular docking studies, imply that curcumin and their analogues interact with G-quadruplex DNA via groove binding. While other analogs of curcumin studied here bind to G-quadruplexes in a qualitatively similar manner their affinities are relatively lower in comparison to curcumin. The Knoevenagel condensate, a methoxy-benzylidene derivative of curcumin, also exhibited significant binding to G-quadruplex DNA, although with two times decreased affinity. Our study establishes the potential of curcumin as a promising natural product for G-quadruplex specific ligands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

G. N. Ramachandran is among the founding fathers of structural molecular biology. He made pioneering contributions in computational biology, modelling and what we now call bioinformatics. The triple helical coiled coil structure of collagen proposed by him forms the basis of much of collagen research at the molecular level. The Ramachandran map remains the simplest descriptor and tool for validation of protein structures. He has left his imprint on almost all aspects of biomolecular conformation. His contributions in the area of theoretical crystallography have been outstanding. His legacy has provided inspiration for the further development of structural biology in India. After a pause, computational biology and bioinformatics are in a resurgent phase. One of the two schools established by Ramachandran pioneered the development of macromolecular crystallography, which has now grown into an important component of modern biological research in India. Macromolecular NMR studies in the country are presently gathering momentum. Structural biology in India is now poised to again approach heights of the kind that Ramachandran conquered more than a generation ago.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of telomeric G-quadruplexes has been shown to inhibit telomerase activity. Indeed, a number of small molecules capable of p-stacking with G-tetrads have shown the ability to inhibit telomerase activity through the stabilization of G-quadruplexes. Curcumin displays a wide spectrum of medicinal properties ranging from anti-bacterial, anti-viral, anti-protozoal, anti-fungal and anti-inflammatory to anti-cancer activity. We have investigated the interactions of curcumin and its structural analogues with the human telomeric sequence AG(3)(T(2)AG(3))(3) under molecular crowding conditions. Experimental studies indicated the existence of a AG(3)(T(2)AG(3))(3)/curcumin complex with binding affinity of 0.72 x 10(6) M-1 under molecular crowding conditions. The results from UV-visible absorption spectroscopy, a fluorescent TO displacement assay, circular dichroism and molecular docking studies, imply that curcumin and their analogues interact with G-quadruplex DNA via groove binding. While other analogs of curcumin studied here bind to G-quadruplexes in a qualitatively similar manner their affinities are relatively lower in comparison to curcumin. The Knoevenagel condensate, a methoxy-benzylidene derivative of curcumin, also exhibited significant binding to G-quadruplex DNA, although with two times decreased affinity. Our study establishes the potential of curcumin as a promising natural product for G-quadruplex specific ligands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose the generation of Standard Model fermion hierarchy by the extension of renormalizable SO(10) GUT with O(N (g) ) family gauge symmetry. In this scenario, Higgs representations of SO(10) also carry family indices and are called Yukawons. Vacuum expectation values of these Yukawon fields break GUT and family symmetry and generate MSSM Yukawa couplings dynamically. We have demonstrated this idea using Higgs irrep, ignoring the contribution of 1 2 0-plet which is, however, required for complete fitting of fermion mass-mixing data. The effective MSSM matter fermion couplings to the light Higgs pair are determined by the null eigenvectors of the MSSM-type Higgs doublet superfield mass matrix . A consistency condition on the doublet (1,2,+/- 1]) mass matrix ( 0) is required to keep one pair of Higgs doublets light in the effective MSSM. We show that the Yukawa structure generated by null eigenvectors of are of generic kind required by the MSSM. A hidden sector with a pair of (S (a b) ; I center dot (a b) ) fields breaks supersymmetry and facilitates 0. SUSY breaking is communicated via supergravity. In this scenario, matter fermion Yukawa couplings are reduced from 15 to just 3 parameters in MSGUT with three generations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reveals an early quasi-saturation (QS) effect attributed to the geometrical parameters in shallow trench isolation-type drain-extended MOS (STI-DeMOS) transistors in advanced CMOS technologies. The quasi-saturation effect leads to serious g(m) reduction in STI-DeMOS. This paper investigates the nonlinear resistive behavior of the drain-extended region and its impact on the particular behavior of the STI-DeMOS transistor. In difference to vertical DMOS or lateral DMOS structures, STI-DeMOS exhibits three distinct regions of the drain extension. A complete understanding of the physics in these regions and their impact on the QS behavior are developed in this paper. An optimization strategy is shown for an improved g(m) device in a state-of-the-art 28-nm CMOS technology node.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The strengthening behavior of particle-reinforced metal-matrix composites (MMCp) is primarily attributed to the dislocation strengthening effect and the load-transfer effect. To account for these two effects in a unified way, a new hybrid approach is developed in this paper by incorporating the geometrically necessary dislocation strengthening effect into the incremental micromechanical scheme. By making use of this hybrid approach, the particle-size-dependent inelastic deformation behavior of MMCp is given. Some comparisons with the available experimental results demonstrate that the present approach is satisfactory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amino acid substitution matrices play an essential role in protein sequence alignment, a fundamental task in bioinformatics. Most widely used matrices, such as PAM matrices derived from homologous sequences and BLOSUM matrices derived from aligned segments of PROSITE, did not integrate conformation information in their construction. There are a few structure-based matrices, which are derived from limited data of structure alignment. Using databases PDB_SELECT and DSSP, we create a database of sequence-conformation blocks which explicitly represent sequence-structure relationship. Members in a block are identical in conformation and are highly similar in sequence. From this block database, we derive a conformation-specific amino acid substitution matrix CBSM60. The matrix shows an improved performance in conformational segment search and homolog detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For metal-matrix composites (MMCs), interfacial debonding between the ductile matrix and the reinforcing hard inclusions is an important failure mode. A fundamental approach to improving the properties of MMCs is to optimize their microstructure to achieve maximum strength and toughness. Here, we investigate the flow stress of a MMC with a nanoscale microstructure similar to that of bone. Such a 'biomorphous' MMC would be made of staggered hard and slender nanoparticles embedded in a ductile matrix. We show that the large aspect ratio and the nanometer size of inclusions in the biomorphous MMC lead to significantly improved properties with increased tolerance of interfacial damage. In this case, the partially debonded inclusions continue to carry mechanical load transferred via longitudinal shearing of the matrix material between neighboring inclusions. The larger the inclusion aspect ratio, the larger is the flow stress and work hardening rate for the composite. Increasing the volume concentration of inclusion also makes the biomorphous MMC more tolerant of interfacial damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The material response and failure mechanism of unidirectional metal matrix composite under impulsive shear loading are investigated in this paper. Both experimental and analytical studies were performed. The shear strength of unidirectional C-f/A356.0 composite and A356.0 aluminum alloy at high strain rate were measured with a modified split Hopkinson torsional bar technique. The results indicated that the carbon fibers did not improve the shear strength of aluminum matrix if the fiber orientation aligned with the shear loading axis. The microscopic inspection of the fractured surface showed a multi-scale zigzag feature which implied a complicated shear failure mechanism in the composite. In addition to testing, the micromechanical stress field in the composite was analyzed by the generalized Eshelby equivalent method (GEEM). The influence of cracking in matrix on the micromechanical stress field was investigated as well. The results showed that the stress distribution in the composite is quite nonhomogeneous and very high shear stress concentrations are found in some regions in the matrix. The high shear stress concentration in the matrix induces tensile cracking at 45 degrees to the shear direction. This in turn aggravates the stress concentration at the fiber/matrix interface and finally leads to a catastrophic failure in the composite. From the correlation between the analysis and experimental results, the shear failure mechanism of unidirectional C-f/A356.0 composite can be elucidated qualitatively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A composite material containing uniformly distributed micrometer-sized Nb particles in a Zr-based amorphous matrix was prepared by suction cast. The resulting material exhibits high fractured strength over 1550 MPa and enhanced plastic strain of about 29.7% before failure in uniaxial compression test at room temperature. Studies of the serrations on the stress-strain curves and the shear bands on the fractured samples reveal that the amplitude of the stress drop of each serration step corresponds to the extent of the propagation of a single shear band through the materials. The composite exhibits more serration steps and smaller amplitude of stress drop due to the pinning of shear band propagation by ductile Nb particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper the rarefied gas how caused by the sudden change of the wall temperature and the Rayleigh problem are simulated by the DSMC method which has been validated by experiments both in global flour field and velocity distribution function level. The comparison of the simulated results with the accurate numerical solutions of the B-G-K model equation shows that near equilibrium the BG-K equation with corrected collision frequency can give accurate result but as farther away from equilibrium the B-G-K equation is not accurate. This is for the first time that the error caused by the B-G-K model equation has been revealed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphite-flake reinforced Cu47Ti34Zr11 Ni-8 bulk metallic glass matrix composite was fabricated by water-cooled copper mould cast. Most of the graphite flakes still keep unreacted and distribute uniformly in the amorphous matrix except that some reactive wetting occurs by the formation of TiC particles around the flakes. It reveals that the presence of graphite flakes does not affect the onset of the glass transition temperature, crystallization reaction and liquidus of the metallic glass. The resulting material shows obvious serrated flow and higher fracture strength under room temperature compressive load, comparing with the monolithic bulk metallic glass (BMG). Three types of interaction between the shear bands and graphite flakes, namely, shear band termination, shear bands branching and new shear bands formation near the graphite flakes can be observed by quasi-static uniaxial compression test and bonded interface technique through Vickers indentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On the basis of the well-known shear-lag analysis of fibre/matrix interface stresses and the assumption of identical axial strains in the fibre and matrix, a new model for predicting the energy release rate of interfacial fracture of the fibre pull-out test model is attempted. The expressions for stresses in the fibre, matrix and interface are derived. The formula for interfacial debonding energy release rate is given. Numerical calculations are conducted and the results obtained are compared with those of the existing models.