976 resultados para Frequent Sequential Patterns
Resumo:
小麦加工品质改良已成为我国小麦育种的主要目标之一。特别是我国加入WTO以后,对小麦产品的质量提出了更高的要求,小麦品质改良的任务将更加艰巨和重要,小麦胚乳蛋白是影响小麦加工品质性状的重要因素。因此,深入了解小麦胚乳蛋白对加工品质性状的影响及其分子基础,为品质改良提供理论依据和科学指导,对加速我国小麦品质育种和优质小麦生产具有重要意义。本研究选用在麦谷蛋白5个基因位点(Glu-A1、Glu-B1、Glu-D1、Glu-B3和Glu-D3)上均含不同等位基因的小麦品种99G45和京771及Pm97034和京771杂交F9代共164个麦谷蛋白纯合系,及228个中国推广普通小麦品种和高代育成品系为试材,研究了麦谷蛋白Glu-1和Glu-3位点基因等位变异对籽粒蛋白、湿面筋含量、Zeleny沉降值和SDS沉降值间的关系;本研究还利用小麦A、B和D基因组中低分子量麦谷蛋白亚基(LMW-GS)基因特异引物,通过PCR方法克隆了1个Glu-A3位点和3个Glu-B3位点LMW-GS基因片段,在此基础上分析了不同等位基因对品质造成差异的分子基础;另外,本研究对中国近年推广的部分品种和育成的高代品系资源的多样性进行了分析。现将主要研究结果简述如下: 1. 对来自三个麦区的148份材料的醇溶蛋白组成进行了分析,结果表明,各麦区醇溶蛋白模式具有较大差异。在ω区,A7、B、E、F、G、J、P、Q、S和U仅存在于西南秋播麦区;A3、M、N、R、W和X仅存在于黄淮特种麦区;K仅存在于北方冬麦区;A6是北方冬麦区出现频率最高的带型模式,而西南秋播麦区中D出现的频率最高。ω-区的E、H和M几种模式是以前国内外未曾报道的。且初步确定,这些模式对品质性状具有正效应。至于γ区,A、B、D、E和F在各区均有出现,其中B和E在各区出现的频率都很高,在26.1-39.6%之间。相反,H 仅出现在黄淮特种麦区,J仅限于西南秋播麦区。对于β-区醇溶蛋白,B型模式在所有区中都相当高,而模式A仅存在于第三区.对于α-区,模式A在Ⅲ区而模式D在Ⅱ区出现的频率很高。1BL.1RS易位系在中国小麦品种中出现频率高达41.2%,在I, II和Ⅲ麦区的出现频率分别为 45.5、43.5和35.2%。各生态区模式的差异可能是品种适应不同生态条件和人为选择的结果,但这有待进一步证明。由于醇溶蛋白位点(Gli-1)与LMW-GS位点(Glu-3)紧密连锁,本结果可为下面确定普通小麦LMW-GS等位基因变异所用。 2. 利用Gli-1与Glu-3的紧密连锁,以228个小麦品种/系为材料,首次对中国小麦品种麦谷蛋白亚基的6个位点进行综合分析,研究小麦籽粒蛋白与品质性状间的关系,结果表明6个高分子量(HMW)和低分子量(LMW)麦谷蛋白位点对蛋白质含量的效应大小为,Glu-D1>Glu-B3>Glu-A1=Glu-B1> Glu-A3=Glu-D3;对GMP含量的效应大小为, Glu-A3>Glu-B3>Glu-D1> Glu-B1>Glu-A1>Glu-D3;对湿面筋含量的效应大小为, Glu-B1>Glu-B3= Glu-D3>Glu-A3>Glu-A1>Glu-D1;对Zeleny沉降值的效应大小为, Glu-A1> Glu-B3>Glu-D3>Glu-D1>Glu-B1>Glu-A3;对SDS沉降值的效应大小为, Glu-B3>Glu-A1=Glu-D1=Glu-A3>Glu-D3>Glu-B1。对蛋白含量而言,各位点的最佳组合方式为1、17+18、5+10、Glu-A3e、Glu-B3g、Glu-D3b;对湿面筋含量而言,各位点的最佳组合方式为1、6+8、5+10、Glu-A3d、Glu-B3c、Glu-D3b;对Zeleny沉降值而言,各位点的最佳组合方式为N、17+18、5+10、Glu-A3d、Glu-B3d、Glu-D3b;对SDS沉降值而言,各位点的最佳组合方式为1、7+8、2.2+12、Glu-A3b、Glu-B3g、Glu-D3b。另外,分析了稀有亚基对5+12与2.2+12与品质性状的关系,认为5+12对品质有负效应,2.2+12对品质有正效应。在品质育种时,应对优异组合或优异亚基加以利用。 3. 首次利用重组自交系(RILs)为材料,研究麦谷蛋白亚基表达量与品质性状的关系,通过对重组自交系中各HMW-GS表达量的分析,认为,就单个亚基的表达量而言,7亚基最高;其次为2亚基、5亚基、12亚基和10亚基;亚基9和1的表达量最小;N亚基不表达。对成对出现的亚基对而言,x型和y型亚基的总表达量2+12>5+10>7+9>17+18。就单个亚基与品质性状的关系而言,仅有10亚基的表达量与蛋白含量的相关性达5%的显著水平,2亚基的表达量与湿面筋含量呈负相关,显著水平也达5%,其余单个亚基对品质性状均无显著影响;就x型/y型亚基的比例来看,2/12和5/10对湿面筋含量都有显著的负效应;对某一位点等位基因控制的亚基表达总量来看,2+12对SDS沉降值有显著负效应。另外,本研究得出:2+12的亚基对的负效应主要体现在2亚基上,且在同一位点上,x型亚基的表达量大于y型。所以推导稀有亚基组合2+10很可能也是劣质亚基。 4. 以 Glu-A1、Glu-B1、Glu-D1、Glu-B3和Glu-D3作为5个因素对99G45/京771和Pm97034/京771杂交后代的蛋白质含量和SDS沉降值进行多因素方差分析。结果表明,Glu-A1和Glu-D3对蛋白含量的加性效应达5%显著水平;Glu-D1 * Glu-D3对蛋白质含量的互作效应也达5%显著水平;其余位点的加性和互作效应对蛋白质含量的影响均不显著。对SDS 沉降值而言,Glu-D1的加性效应最大,贡献率为4.2 % ,达1 %显著水平,其次是Glu-B1位点,贡献率为3.3% ,达5%显著水平。其余位点对SDS 沉降值的加性和互作效应均未达5%显著水平。总体而言, 各位点对蛋白含量的效应大小为Glu-D3 > Glu-A1 > Glu-D1>Glu-B1>Glu-B3;对SDS沉降值的效应大小为Glu-D1>Glu-B1> Glu-D3>Glu-A1> Glu-B3。Glu-D1和Glu-D3位点上等位基因变异对蛋白含量有显著或极显著影响,含Glu-D1d和Glu-D3 GD、Glu-D3 JD基因的株系分别比含Glu-D1a和Glu-D3 PD基因的株系有较高的蛋白含量;在该遗传背景下,麦谷蛋白各基因位点对蛋白含量的效应大小依次排列为:Glu-A1位点1>N;Glu-B1位点7+9>17+18>14+15;Glu-D1位点5+10>2+12;Glu-B3位点GB>JB>PB;Glu-D3位点GB>JB>PB。对SDS沉降值的效应大小依次排列为:Glu-A1位点1>N;Glu-B1位点7+9=17+18>14+15;Glu-D1位点5+10>2+12;Glu-B3位点GB>JB>PB;Glu-D3位点GB>JB>PB。所以,对蛋白含量和SDS沉降值均较好的组合为1,7+9,5+10,GB,GD。 5. 因为GB和PB对品质的效应有显著差异,选取LMW-GS位点特异扩增引物对京771、99G45和Pm97034的Glu-B3位点进行扩增,结果得到三个不一样的扩增片段(Genebank号为DQ539657-DQ539659),得到的基因片段与Genebank中已报道的同类序列高度同源。通过克隆片段组成的分析,发现对Pm97034的序列较京771和99G45段少一个7氨基酸的重复单元,这可能是它较另外两个片段对面筋强度影响小的主要原因;另外,在99G45的序列中,124位处出现L(亮氨酸)代替P(脯氨酸),158位处出现了T(苏氨酸)代换M(蛋氨酸),这可能是99G45Glu-B3位点序列对SDS沉降值的效应显著优于Pm97034的原因。 6.通过对RILs各位点同普通小麦品种(系)各位点与品质关系的比较,发现对SDS沉降值的效应,各位点在不同研究材料中是不同的,普通小麦中:Glu-B3>Glu-A1=Glu-D1=Glu-A3>Glu-D3>Glu-B1,RILs中:Glu-D1>Glu-B1> Glu-D3>Glu-A1> Glu-B3。利用重组自交系材料(完全排除了1BL/1RS易位干扰)所得到的结果与Gupta and MacRitchie (1994)所得结论一致。进一步证实了1BL/1RS易位对小麦品质的重要影响。对蛋白含量而言,普通小麦品种(系)中,Glu-D1>Glu-B3>Glu-A1=Glu-B1> Glu-A3=Glu-D3,RILs中,Glu-D3 > Glu-A1 > Glu-D1>Glu-B1>Glu-B3,和对SDS沉降值的效应一样,推断在非1BL/1RS易位的情况下,各位点对其效应应为Glu-D3 > Glu-A1 > Glu-D1>Glu-B1>Glu-B3。 对同一位点的等位基因而言,普通小麦和重组自交系中Glu-A1和Glu-D1上的等位基因对品质性状的贡献是一致的,但Glu-B1上的等位基因对SDS沉降值的贡献发生了变化,普通小麦中17+18>7+9,RILs中7+9>17+18,这可能也是1BL/1RS造成的。 Baking quality improved is one of the main object of wheat bread in China. The overall objective of the present studies was to increase the understanding about protein quality in wheat, i.e. to make it possible to improve the production of wheat with desired quality for different end-uses. With the analysis of gluten protein in RILs, 99G45/Jing 771 and Pm97034/Jing, and 228 wheat cultivars or lines in China, the correlations between glutenin compositions and protein content, glutenin macropolymer(GMP), wet gluten content, Zeleny sedimentation value and SDS sedimentation value contentand breadmaking quality were studied. Also a rapid and efficient detection method of geneticpolymorphism at Glu-B3 loci in wheat was established using polymerase chain reaction(PCR).The results obtained were as follows: 1. Cultivated Chinese wheat germplasm has been a valuable genetic resource in international plant breeding. Patterns of gliadin among cultivated Chinese accessions are unknown, despite the proven value and potential novelty. The objective of this work was to analyse the diversity within improved Chinese wheat germplasm. The electrophoretic banding patterns of gliadin in common wheat cultivars and advanced lines were determined by acid-polyacrylamide gel electrophoresis. For 148 leading commercial cultivars and promising advanced lines used in our study, 48 patterns were identified, 29 corresponding to ω-gliadin, 9 to γ-gliadin, 5 to β-gliadin and 5 to α-gliadin. The most frequent patterns were A6 in ω; B in γ; B in β and A in the region of α. 116 band types appeared in the148 samples: 94 accessions had unique gliadin types, and 22 gliadin types while not unique were found in 54 accessions. The gliadin patterns of Chinese wheat cultivars and lines greatly differed from the patterns of wheat lines from other countries. Three patterns, E, J, H, M, N and O in the ω-zone had not previously been reported. Three wheat zones,the Northern Winter Wheat Region, the Yellow and Huai Valley River valleys Winter Wheat Region and the Southwestern Winter Wheat Region,in China showed different frequencies in their gliadin patterns. This information can be used to monitor genetic diversity with Chinese wheat germplasm. 2. To analyse the relationship between the loci and characteristics quality, we utilized the 228 cultivars/lines. The results showed that : For protein content, Glu-D1 >Glu-B3>Glu-A1=Glu-B1>Glu-A3=Glu-D3. For GMP content, Glu-A3>Glu-B3 >Glu-D1>Glu-B1>Glu-A1>Glu-D3. For wet gluten content, Glu-B1>Glu-B3= Glu-D3>Glu-A3>Glu-A1>Glu-D1. For Zeleny sedimentation value, Glu-A1>Glu-B3> Glu-D3>Glu-D1>Glu-B1>Glu-A3, For SDS sedimentation value, Glu-B3>Glu-A1= Glu-D1= lu-A3>Glu-D3>Glu-B1。For protein content, the best combination of 6 loci is (1,17+18,5+10,Glu-A3e, Glu-B3g,Glu-D3b). For wet gluten content, the best combination of 6 loci is (1,6+8,5+10,Glu-A3d,Glu-B3c,Glu-D3b). For Zeleny sedimentation value, the best combination of 6 loci is (N,17+18,5+10,Glu-A3d, Glu-B3d, Glu-D3b). For SDS sedimentation value, the best combination of 6 loci is(7+8,2.2+12,Glu-A3b, Glu-B3g,Glu-D3b)。Additional, we analysed the relationship between the subunits 5+12 and 2.2+12, think that 5+12 was negative for quality, 2.2+12 is postive for quality. It should be effective utilized. 3. It’s the first time to utilize RILs to study the relationship between subunits expression quantity and characteristics quality. The results showed that: For single subunit, the expression quantity of 7 is the highest. Then the 2, 5, 12 and 10. The expression of subunit 9 and 1 is the lowest. Subunit N is not expressed. For subunits, the expression quantity of x type and y type are 2+12>5+10>7+9>17+18. The significant relation of 5% only showed between the expression quantity of subunit 10 and protein content. The relationship between expression quantity of others and characteristic quality was not significant. For x type/ytype, 2/12 and 5/10 is negative relation insignificant level. For the subunit(s) in a loci, Only 2+12 effect SDS sedimentation value negative in significant level. 4. With RILs 99G45/Jing 771 and Pm97034/Jing 771, we found that: The effective of Glu-A1, Glu-D3 and Glu-D1 * Glu-D3 for protein content is significant at 5% level. The effect of other loci for protein wre not significant. For SDS sedimentation value, the effect of Glu-D1is the highest, which contribution is 4.2 % .Then the Glu-B1, contribution is 3.3%. The effect of other loci for SDS sedimentationvalue were not significant. In total, for protein content: Glu-D3 > Glu-A1 > Glu-D1>Glu-B1>Glu-B3; for SDS sedimentationvalue: Glu-D1>Glu-B1> Glu-D3>Glu-A1>Glu-B3. The effect of alleles in Glu-D1 and Glu-D3 loci are significant at 1% or 5%. In Glu-A1, 1>N; Glu-B1, 7+9>17+18>14+15; Glu-D, 5+10>2+12; Glu-B3, GB>JB>PB; Glu-D3, GB>JB>PB. For SDS sedimentation, Glu-A1, 1>N; Glu-B1, 7+9=17+18>14+15; Glu-D1, 5+10>2+12; Glu-B3, GB>JB>PB; Glu-D3, GB>JB>PB. The best combinations for SDS sedimentation value is 1,7+9,5+10,GB,GD. 5. Because of the difference of GB and PB for SDS sedimentation value, we selected the specific primer for LMW-GS loci to amplified the Glu-B3 of Jing771, 99G45and Pm97034. We got 3 amplify fragment (Gene Bank accession number are DQ539657-DQ539659). We found that the fragment of Pm97034 were deleted a repetitive 7 amino acid domain, which is perhaps the reason effect the gluten strength. Furthermore, in the position 124 of sequence 99G45, L has been replaced with P. Position 158, T replaced M, which may be the reason why the Glu-B3 locus of 99G45 is prefer to Pm97034 when refer to SDS sedimentation value. 6. Comparing the results of RILs and common wheat, we found that perhaps just the1BL/1RS made the difference of loci in different accession.
Resumo:
IEECAS SKLLQG
Resumo:
IEEE
Resumo:
Land use and land cover change as the core of coupled human-environment systems has become a potential field of land change science (LCS) in the study of global environmental change. Based on remotely sensed data of land use change with a spatial resolution of 1 km x 1 km on national scale among every 5 years, this paper designed a new dynamic regionalization according to the comprehensive characteristics of land use change including regional differentiation, physical, economic, and macro-policy factors as well. Spatial pattern of land use change and its driving forces were investigated in China in the early 21st century. To sum up, land use change pattern of this period was characterized by rapid changes in the whole country. Over the agricultural zones, e.g., Huang-Huai-Hai Plain, the southeast coastal areas and Sichuan Basin, a great proportion of fine arable land were engrossed owing to considerable expansion of the built-up and residential areas, resulting in decrease of paddy land area in southern China. The development of oasis agriculture in Northwest China and the reclamation in Northeast China led to a slight increase in arable land area in northern China. Due to the "Grain for Green" policy, forest area was significantly increased in the middle and western developing regions, where the vegetation coverage was substantially enlarged, likewise. This paper argued the main driving forces as the implementation of the strategy on land use and regional development, such as policies of "Western Development", "Revitalization of Northeast", coupled with rapidly economic development during this period.
Resumo:
Along with its economic reform, China has experienced a rapid urbanization. This study mapped urban land expansion in China using high-resolution Landsat Thematic Mapper and Enhanced Thematic Mapper data of 1989/1990, 1995/1996 and 1999/2000 and analyzed its expansion modes and the driving forces underlying this process during 1990-2000. Our results show that China's urban land increased by 817 thousand hectares, of which 80.8% occurred during 1990-1995 and 19.2% during 1995-2000. It was also found that China's urban expansion had high spatial and temporal differences, such as four expansion modes, concentric, leapfrog, linear and multi-nuclei, and their combinations coexisted and expanded urban land area in the second 5 y was much less than that of the first 5 y. Case studies of the 13 mega cities showed that urban expansion had been largely driven by demographic change, economic growth, and changes in land use policies and regulations.
Resumo:
Land-use change is an important aspect of global environment change. It is, in a sense, the direct result of human activities influencing our physical environment. Supported by the dynamic serving system of national resources, including both the environment database and GIS technology, this paper analyzed the land-use change in northeastern China in the past ten years (1990 - 2000). It divides northeastern China into five land-use zones based on the dynamic degree (DD) of land-use: woodland/grassland - arable land conversion zone, dry land - paddy field conversion zone, urban expansion zone, interlocked zone of farming and pasturing, and reclamation and abandoned zone. In the past ten years, land-use change of northeastern China can be generalized as follows: increase of cropland area was obvious, paddy field and dry land increased by 74. 9 and 276. 0 thousand ha respectively; urban area expanded rapidly, area of town and rural residence increased by 76. 8 thousand ha; area of forest and grassland decreased sharply with the amount of 1399. 0 and 1521. 3 thousand ha respectively; area of water body and unused land increased by 148. 4 and 513. 9 thousand ha respectively. Besides a comprehensive analysis of the spatial patterns of land use, this paper also discusses the driving forces in each land-use dynamic zones. The study shows that some key biophysical factors affect conspicuously the conversion of different land- use types. In this paper, the relationships between land- use conversion and DEM, accnmlated temperature(>= 10 degrees C) and precipitation were analysed and represented. We conclude that the land- use changes in northeast China resulted from the change of macro social and economic factors and local physical elements. Rapid population growth and management changes, in some sense, can explain the shaping of woodland/grassland - cropland conversion zone. The conversion from dry land to paddy field in the dry land - paddy field conversion zone, apart from the physical elements change promoting the expansion of paddy field, results from two reasons: one is that the implementation of market-economy in China has given farmers the right to decide what they plant and how they plant their crops, the other factor is originated partially from the change of dietary habit with the social and economic development. The conversion from paddy field to dry land is caused primarily by the shortfall of irrigation water, which in turn is caused by poor water allocation managed by local governments. The shaping of the reclamation and abandoned zone is partially due to the lack of environment protection consciousness among pioneer settlers. The reason for the conversion from grassland to cropland is the relatively higher profits of fanning than that of pasturing in the interlocked zone of farming and pasturing. In northeastern China, the rapid expansion of built-up areas results from two factors: the first is its small number of towns; the second comes from the huge potential for expansion of existing towns and cities. It is noticeable that urban expansion in the northeastern China is characterized by gentle topographic relief and low population density. Physiognomy, transportation and economy exert great influences on the urban expansion.
Resumo:
With the rapid increase of the number and influence of floating population in China, it is urgently needed to understand the regional types of China's floating population and their spatial characteristics. After reviewing the current methods for identifying regional types of floating population, this paper puts forward a new composite-index identification method and its modification version which is consisted of two indexes of the net migration rate and gross migration rate. Then, the traditional single-index and the new composite-index identification methods are empirically tested to explore their spatial patterns and characteristics by using China's 2000 census data at county level. The results show: (1) The composite-index identification method is much better than traditional single-index method because it can measure the migration direction and scale of floating simultaneously, and in particular it can identify the unique regional types of floating population with large scale of immigration and emigration. (2) The modified composite-index identification method, by using the share of a region's certain type of floating population to the total in China as weights, can effectively correct the over- or under-estimated errors due to the rather large or small total population of a region. (3) The spatial patterns of different regional types of China's floating population are closely related to the regional differentiation of their natural environment, population density and socio-economic development level. The three active regional types of floating population are mainly located in the eastern part of China with lower elevation, more than 800 mm precipitation, rather higher population densities and economic development levels.