963 resultados para FULLERENE CATIONS
Resumo:
The ability of new hydrophobic tridentate ligands based on 2,6-bis(benziinidazol-2-yl)pyridine, 2,6-bis(benzoxazol-2-yl)pyridine and 2,6-bis(benzothiazol-2-yl)pyridine to selectively extract americium(III) from europium(III) was measured. The most promising ligand-2,6-bis(benzoxazol-2-yl)-4-(2-decyl-1-tetradecyloxy)pyridine L-9 was found to give separation factors (SFAm/Eu) of up to 70 when used to extract cations from 0.02-0.10 M HNO3 into TPH in synergy with 2-bromodecanoic acid. Six structures of lanthanide complexes with 2,6-bis(benzoxazol-2-yl)pyridine L-6 were then determined to evaluate the types of species that are likely to be involved in the separation process. Three structural types were observed, namely [LnL(6)(NO3)(3)(H2O)2], 11-coordinate only for La, [LnL(6) (NO3)(3) (CH3CN)], 10-coordinate for Pr, Nd and Eu and [LnL(6) (NO3)(3)(H2O)], L 10-coordinate for Eu and Gd. Quantum Mechanics calculations were carried out on the tridentate ligands to elucidate the conformational preferences of the ligands in the free state and protonated and diprotonated forms and to assess the electronic properties of the ligands for comparison with other terdentate ligands used in lanthanide/actinide separation processes.
Resumo:
The complexes [Ru(1-C=C-1,10-C2B8H9)(dppe)Cp*] (3a), [Ru(1-C C-1,12-C2B10H11)(dppe)-Cp*] (3b), [{Ru(dppe)Cp*}(2){mu-1,10-(C C)(2)-1,10-C2B8H8}] (4a) and [{Ru(dppe)Cp*}(2){mu-1,12-(C C)2- 1,12-C2B10-H-10}] (4b), which form a representative series of mono- and bimetallic acetylide complexes featuring 10- and 12-vertex carboranes embedded within the dethynyl bridging ligand, have been prepared and structurally characterized. In addition, these compounds have been examined spectroscopically (UV-is-NIR, IR) in all accessible redox states. The significant separation of the two, one-electron anodic waves observed in the cyclic voltammograms of the bimetallic complexes 4a and 4b is largely independent of the nature of the electrolyte and is attributed to stabilization of the intermediate redox products [4a](+) and [4b](+) through interactions between the metal centers across a distance of ca. 12.5 angstrom. The mono-oxidized bimetallic complexes (4a](+) and [4b](+) exhibit spectroscopic properties consistent with a description of these species in terms of valence-localized (class II) mixed-valence compounds, including a unique low-energy electronic absorption band, attributed to an, IVCT-type transition that tails into the IR region. DFT calculations with model systems [4a-H](+) and [4b-H](+) featuring simplified ligand sets reproduce the observed spectroscopic data and localized electronic structures for the mixed-valence cations [4a](+) and [4b](+).
Resumo:
Polymetallic nanodimensional assemblies have been prepared via metal directed assembly of dithiocarbamate functionalized cavitand structural frameworks with late transition metals (Ni, Pd, Cu, Au, Zn, and Cd). The coordination geometry about the metal centers is shown to dictate the architecture adopted. X-ray crystallographic studies confirm that square planar coordination geometries result in "cagelike" octanuclear complexes, whereas square-based pyramidal metal geometries favor hexanuclear "molecular loop" structures. Both classes of complex are sterically and electronically complementary to the fullerenes (C-60 and C-70). The strong binding of these guests occurred via favorable interactions with the sulfur atoms of multiple dithiocarbamate moieties of the hosts. In the case of the tetrameric copper(II) complexes, the lability of the copper(II)-dithiocarbamate bond enabled the fullerene guests to be encapsulated in the electron-rich cavity of the host, over time. The examination of the binding of fullerenes has been undertaken using spectroscopic and electrochemical methods, electrospray mass spectrometry, and molecular modeling.