966 resultados para FOREST TREES
Resumo:
Claims of injustice in global forest governance are prolific: assertions of colonization, marginalization and disenfranchisement of forest-dependent people, and privatization of common resources are some of the most severe allegations of injustice resulting from globally-driven forest conservation initiatives. At its core, the debate over the future of the world's forests is fraught with ethical concerns. Policy makers are not only deciding how forests should be governed, but also who will be winners, losers, and who should have a voice in the decision-making processes. For 30 years, policy makers have sought to redress the concerns of the world's 1.6 billion forest-dependent poor by introducing rights-based and participatory approaches to conservation. Despite these efforts, however, claims of injustice persist. This research examines possible explanations for continued claims of injustice by asking: What are the barriers to delivering justice to forest-dependent communities? Using data collected through surveys, interviews, and collaborative event ethnography in Laos and at the Tenth Conference of Parties to the Convention on Biological Diversity, this dissertation examines the pursuit of justice in global forest governance across multiple scales of governance. The findings reveal that particular conceptualizations of justice have become a central part of the metanormative fabric of global environmental governance, inhibiting institutional evolution and therewith perpetuating the justice gap in global forest governance.
Resumo:
The possibility of encouraging the growth of forests as a means of sequestering carbon dioxide has received considerable attention, partly because of evidence that this can be a relatively inexpensive means of combating climate change. But how sensitive are such estimates to specific conditions? We examine the sensitivity of carbon sequestration costs to changes in critical factors, including the nature of management and deforestation regimes, silvicultural species, relative prices, and discount rates. (C) 2000 Academic Press.
Resumo:
© 2015 Published by Elsevier B.V.Throughout the southern US, past forest management practices have replaced large areas of native forests with loblolly pine plantations and have resulted in changes in forest response to extreme weather conditions. However, uncertainty remains about the response of planted versus natural species to drought across the geographical range of these forests. Taking advantage of a cluster of unmanaged stands (85-130year-old hardwoods) and managed plantations (17-20year-old loblolly pine) in coastal and Piedmont areas of North Carolina, tree water use, cavitation resistance, whole-tree hydraulic (Ktree) and stomatal (Gs) conductances were measured in four sites covering representative forests growing in the region. We also used a hydraulic model to predict the resilience of those sites to extreme soil drying. Our objectives were to determine: (1) if Ktree and stomatal regulation in response to atmospheric and soil droughts differ between species and sites; (2) how ecosystem type, through tree water use, resistance to cavitation and rooting profiles, affects the water uptake limit that can be reached under drought; and (3) the influence of stand species composition on critical transpiration that sets a functional water uptake limit under drought conditions. The results show that across sites, water stress affected the coordination between Ktree and Gs. As soil water content dropped below 20% relative extractable water, Ktree declined faster and thus explained the decrease in Gs and in its sensitivity to vapor pressure deficit. Compared to branches, the capability of roots to resist high xylem tension has a great impact on tree-level water use and ultimately had important implications for pine plantations resistance to future summer droughts. Model simulations revealed that the decline in Ktree due to xylem cavitation aggravated the effects of soil drying on tree transpiration. The critical transpiration rate (Ecrit), which corresponds to the maximum rate at which transpiration begins to level off to prevent irreversible hydraulic failure, was higher in managed forest plantations than in their unmanaged counterparts. However, even with this higher Ecrit, the pine plantations operated very close to their critical leaf water potentials (i.e. to their permissible water potentials without total hydraulic failure), suggesting that intensively managed plantations are more drought-sensitive and can withstand less severe drought than natural forests.
Resumo:
New representations of tree-structured data objects, using ideas from topological data analysis, enable improved statistical analyses of a population of brain artery trees. A number of representations of each data tree arise from persistence diagrams that quantify branching and looping of vessels at multiple scales. Novel approaches to the statistical analysis, through various summaries of the persistence diagrams, lead to heightened correlations with covariates such as age and sex, relative to earlier analyses of this data set. The correlation with age continues to be significant even after controlling for correlations from earlier significant summaries.
Resumo:
p.83-88