970 resultados para FOOD CHOICE
Resumo:
The main research problem of this thesis is to find out the means of promoting the recovery of packaging waste generated in thefast food industry. The recovery of packaging waste generated in the fast food industry is demanded by the packaging waste legislation and expected by the public. The means are revealed by the general factors influencing the recovery of packaging waste, analysed by a multidisciplinary literature review and a case study focusing on the packaging waste managementof McDonald's Oy operating in Finland. The existing solid waste infrastructure does not promote the recovery ofpackaging waste generated in the fast food industry. The theoretical recovery rate of the packaging waste is high, 93 %, while the actual recovery rate is only 29 % consisting of secondary packaging manufactured from cardboard. The total recovery potential of packaging waste is 64 %, resulting in 1 230 tonnes ofrecoverable packaging waste. The achievable recovery potential of 33 %, equalling 647 tonnes of packaging waste could be recovered, but is not recovered mainly because of non-working waste management practises. The theoretical recovery potential of 31 %, equalling 583 tonnes of packaging waste can not be recovered by the existing solid waste infrastructure because of the obscure status of commecial waste, the improper operation ofproducer organisations, and the municipal autonomy. The sorting experiment indicated that it is possible to reach the achievable recovery potential inthe existing solid waste infrastructure. The achievement is promoted by waste producer -oriented waste management practises. The theoretical recovery potential can be reached by increasing the consistency of the solid waste infrastructure through governmental action.
Resumo:
Patulin is a mycotoxin produced by several fungal species of the genera Penicillium and Aspergillus, found on several fruit species and, remarkably, in apples and apple products. Patulin has a broad spectrum of toxicity, including carcinogenicity and teratogenicity in animals. Due to the stability of the molecule, considerable amounts of patulin still remain in apple products after processing. This paper reviews different analytical methods for patulin determination and methods to reduce levels of patulin in apple products as well.
Resumo:
The global human population is expected to reach ∼9 billion by 2050. Feeding this many people represents a major challenge requiring global crop yield increases of up to 100%. Microbial symbionts of plants such as arbuscular mycorrhizal fungi (AMF) represent a huge, but unrealized resource for improving yields of globally important crops, especially in the tropics. We argue that the application of AMF in agriculture is too simplistic and ignores basic ecological principals. To achieve this challenge, a community and population ecology approach can contribute greatly. First, ecologists could significantly improve our understanding of the determinants of the survival of introduced AMF, the role of adaptability and intraspecific diversity of AMF and whether inoculation has a direct or indirect effect on plant production. Second, we call for extensive metagenomics as well as population genomics studies that are crucial to assess the environmental impact that introduction of non-local AMF may have on native AMF communities and populations. Finally, we plead for an ecologically sound use of AMF in efforts to increase food security at a global scale in a sustainable manner.
Resumo:
Environmental histories of plant exchanges have largely centred on their eco- nomic importance in international trade and on their ecological and social impacts in the places where they were introduced. Yet few studies have at- tempted to examine how plants brought from elsewhere become incorporated over time into the regional cultures of material life and agricultural landscapes. This essay considers the theoretical and methodological problems in inves- tigating the environmental history, diversity and distribution of food plants transferred across the Indian Ocean over several millennia. It brings together concepts of creolisation, syncretism, and hybridity to outline a framework for understanding how biotic exchanges and diffusions have been translated into regional landscape histories through food traditions, ritual practices and articu- lation of cultural identity. We use the banana plant - which underwent early domestication across New Guinea, South-east Asia and peninsular India and reached East Africa roughly two thousand years ago - as an example for il- lustrating the diverse patterns of incorporation into the cultural symbolism, material life and regional landscapes of the Indian Ocean World. We show that this cultural evolutionary approach allows new historical insights to emerge and enriches ongoing debates regarding the antiquity of the plant's diffusion from South-east Asia to Africa.
Resumo:
Micronization techniques based on supercritical fluids (SCFs) are promising for the production of particles with controlled size and distribution. The interest of the pharmaceutical field in the development of SCF techniques is increasing due to the need for clean processes, reduced consumption of energy, and to their several possible applications. The food field is still far from the application of SCF micronization techniques, but there is increasing interest mainly for the processing of products with high added value. The aim of this study is to use SCF micronization techniques for the production of particles of pharmaceuticals and food ingredients with controlled particle size and morphology, and to look at their production on semi-industrial scale. The results obtained are also used to understand the processes from the perspective of broader application within the pharmaceutical and food industries. Certain pharmaceuticals, a biopolymer and a food ingredient have been tested using supercritical antisolvent micronization (SAS) or supercritical assisted atomization (SAA) techniques. The reproducibility of the SAS technique has been studied using physically different apparatuses and on both laboratory and semi-industrial scale. Moreover, a comparison between semi-continuous and batch mode has been performed. The behaviour of the system during the SAS process has been observed using a windowed precipitation vessel. The micronized powders have been characterized by particle size and distribution, morphology and crystallinity. Several analyses have been performed to verify if the SCF process modified the structure of the compound or caused degradation or contamination of the product. The different powder morphologies obtained have been linked to the position of the process operating point with respect to the vapour-liquid equilibrium (VLE) of the systems studied, that is, mainly to the position of the mixture critical point (MCP) of the mixture. Spherical micro, submicro- and nanoparticles, expanded microparticles (balloons) and crystals were obtained by SAS. The obtained particles were amorphous or with different degrees of crystallinity and, in some cases, had different pseudo-polymorphic or polymorphic forms. A compound that could not be processed using SAS was micronized by SAA, and amorphous particles were obtained, stable in vials at room temperature. The SCF micronization techniques studied proved to be effective and versatile for the production of particles for several uses. Furthermore, the findings of this study and the acquired knowledge of the proposed processes can allow a more conscious application of SCF techniques to obtain products with the desired characteristics and enable the use of their principles for broader applications.
Resumo:
The present study arose from the need to determine inorganic arsenic (iAs) at low levels in cereal-based food. Validated methods with a low limit of detection (LOD) are required to analyse these kinds of food. An analytical method for the determination of iAs, methylarsonic acid (MA) and dimethylarsinic acid (DMA) in cereal-based food and infant cereals is reported. The method was optimised and validated to achieve low LODs. Ion chromatography-inductively coupled plasma mass spectrometry (LC-ICPMS) was used for arsenic speciation. The main quality parameters were established. To expand the applicability of the method, different cereal products were analysed: bread, biscuits, breakfast cereals, wheat flour, corn snacks, pasta and infant cereals. The total and inorganic arsenic content of 29 cereal-based food samples ranged between 3.7-35.6 and 3.1-26.0 microg As kg-1, respectively. The present method could be considered a valuable tool for assessing inorganic arsenic contents in cereal-based foods.
Resumo:
Suojakaasupakkaaminen on lisääntynyt voimakkaasti viime vuosina elintarvikkeiden pakkaamisessa sillä pakkaamalla elintarvike suojakaasuun voidaan sen hyllyikää pidentää ilman säilöntäaineita. Tällainen pakkaaminen vaatii kuitenkin täysin kaasutiiviin pakkauksen, jonka kaasunläpäisevyys on myös alhainen. Yleisimmin käytetyt pakkausmateriaalit suojakaasupakkaamisessa ovat monikerroksiset muovimateriaalit, joissa yhdistyy monen eri muovin parhaimmat ominaisuudet. Yleisimmin käytettyjä muovilaatuja näissä monikerrosrakenteissa ovat PE, PET, PA ja EVOH polymeerit. Myös muita perinteisiä polymeerejä käytetään jonkin verran näissä rakenteissa. Uudemmat muovilaadut, kuten biohajoavat muovit, eivät ole vielä yleistyneet kaupallisessa käytössä pääasiallisesti niiden korkean hinnan vuoksi. Muovisten pakkausten korvaamista esimerkiksi muovipäällystetyillä kartonkipakkauksilla on viime vuosien aikana tutkittu enenevissä määrin. Muovipakkausten korvaamista helpommin kierrätettävillä ja mahdollisesti biohajoavilla materiaaleilla edistävät EU:n direktiivit, jotka käsittelevät pakkausjätteen käsittelyä. Kartonkivuokien saumaamista kaasutiiviisti tutkittiin myös tässä työssä. Tavoitteena oli löytää pakkaus, joka soveltuisi kanasuikaleiden pakkaamiseen suojakaasuun. Kana on herkkä mikrobiologiselle hajoamiselle, minkä johdosta se tulee pakata suojakaasuun jossa happipitoisuuden tulee olla alle 1 % pakkauspäivästä viimeiseen käyttöpäivään saakka. Suorittamalla erilaisia tiiveystutkimuksia voitiin osoittaa, että kartonkivuoka on mahdollista saumata kaasutiiviisti luotettavalla tavalla. Tämä vaatii kuitenkin kartonkivuokien valmistuksen optimoimista päällystemuovikerroksen ja kartongin paksuuden mukaan sekä kannen saumaamista optimoiduilla saumausparametreilla. Tiivein vuoka saavutettiin muovifilmikannella, jonka saumaus perustui samaan muoviin kuin vuoan saumaus. Polyeteenillä saavutettiin tiivein ja kestävin saumaustulos.