976 resultados para FAD2.2 gene
Resumo:
Mouse NK cells express MHC class I-specific inhibitory Ly49 receptors. Since these receptors display distinct ligand specificities and are clonally distributed, their expression generates a diverse NK cell receptor repertoire specific for MHC class I molecules. We have previously found that the Dd (or Dk)-specific Ly49A receptor is usually expressed from a single allele. However, a small fraction of short-term NK cell clones expressed both Ly49A alleles, suggesting that the two Ly49A alleles are independently and randomly expressed. Here we show that the genes for two additional Ly49 receptors (Ly49C and Ly49G2) are also expressed in a (predominantly) mono-allelic fashion. Since single NK cells can co-express multiple Ly49 receptors, we also investigated whether mono-allelic expression from within the tightly linked Ly49 gene cluster is coordinate or independent. Our clonal analysis suggests that the expression of alleles of distinct Ly49 genes is not coordinate. Thus Ly49 alleles are apparently independently and randomly chosen for stable expression, a process that directly restricts the number of Ly49 receptors expressed per single NK cell. We propose that the Ly49 receptor repertoire specific for MHC class I is generated by an allele-specific, stochastic gene expression process that acts on the entire Ly49 gene cluster.
Resumo:
Background: Mammalian target of rapamycin (mTOR), a central regulator of cell growth, is found in two structurally and functionally distinct multiprotein complexes called mTOR complex (mTORC)1 and mTORC2. The specific roles of each of these branches of mTOR signaling have not been dissected in the adult heart. In the present study, we aimed to bring new insights into the function of cardiac mTORC1-mediated signaling in physiological as well as pathological situations.Methods: We generated mice homozygous for loxP-flanked raptor and positive for the tamoxifen-inducible Cre recombinase (MerCreMer) under control of the α- myosin heavy chain promoter. The raptor gene encodes an essential component of mTORC1. Gene ablation was induced at the age of 10-12 weeks, and two weeks later the raptor cardiac-knockout (raptor-cKO) mice started voluntary cagewheel exercise or were subjected to transverse aortic constriction (TAC) to induce pressure overload.Results: In sedentary raptor-cKO mice, ejection fractions gradually decreased, resulting in significantly reduced values at 38 days (P < 0.001). Raptor-cKO mice started to die during the fifth week after the last tamoxifen injection. At that time, the mortality rate was 36% in sedentary (n = 11) and 64% in exercising (n = 14) mice. TAC-induced pressure overload resulted in severe cardiac dysfunction already at earlier timepoints. Thus, at 7-9 days after surgery, ejection fraction and fractional shortening values were 22.3% vs 43.5% and 10.2% vs 21.5% in raptor-cKO vs wild-type mice, respectively. This was accompanied by significant reductions of ventricular wall and septal thickness as well as an increase in left ventricular internal diameter. Moreover, ventricular weight to tibial length ratios were increased in wild-type, but not in the raptor-cKO TAC mice. Together, this shows that raptor-cKO mice rapidly developed dilated cardiomyopathy without going through a phase of adaptive hypertrophy. Expression of ANP and β-MHC was induced in all raptor-cKO mice irrespective of the cardiac load conditions. Consistent with reduced mTORC1 activity, phosphorylation of ribosomal S6 kinase and 4E-BP1 was blunted, indicating reduced protein synthesis. Moreover, expression of multiple genes involved in the regulation of energy metabolism was altered, and followed by a shift from fatty acid to glucose oxidation.Conclusion: Our study suggests that mTORC1 coordinates protein and energy metabolic pathways in the heart. Moreover, we demonstrate that raptor is essential for the cardiac adaptation to increased workload and importantly, also for normal physiological cardiac function.
Resumo:
Malignant gliomas, including the most common and fatal form glioblastoma (GBM, WHO grade IV astrocytoma), remain a challenge to treat. In the United States and Europe, more than 30,000 patients per year are newly diagnosed with GBM. Despite ongoing trials, the best currently available multimodal treatment approaches include surgical resection followed by concomitant and adjuvant radiation (RT) and temozolomide (TMZ) therapy, resulting in a low median overall survival (OS) rate ranging from 12.2 - 15.9 months. The important role of genetic and epigenetic changes in DNA, RNA, and protein alteration as well as epigenetic changes secondary to the tumor microenvironment and outside selection pressure (therapeutic interventions), are increasingly being recognized. In GBM treatment, the focus is shifting toward a more patient-centered (personalized) therapy. In this regard, in particular, microRNAs are being increasingly studied. MicroRNAs are non¬protein coding small RNAs that serve as negative gene regulators by binding to a specific sequence in the promoter region of a target gene, thus regulating gene expression. A single microRNA potentially targets hundreds of genes; thus, microRNAs and their cognate target genes have important roles as tumor suppressors and oncogenes as well as regulators of various cancer- specific cellular features, such as proliferation, apoptosis, invasion, and metastasis. The identification of distinct microRNA-gene regulatory networks in GBM patients can be expected to provide novel therapeutic insights by identifying candidate patients for targeted therapies. To this end, in this work we identified and validated clinically relevant and meaningful novel gene- microRNA regulatory networks that correlated with MR tumor phenotypes, histopathology, and patient survival and response rates to therapy. - Le traitement des gliomes malins, y compris sous leur forme la plus commune et meurtrière, le glioblastome (GBM, ou astrocytome de grade IV selon l'OMS), demeure à ce jour un défi. Aux États-Unis et en Europe, un nouveau diagnostic de GBM est prononcé dans plus de 30Ό00 cas par an. En dépit de tests en cours, les meilleures approches thérapeutiques combinées actuellement disponibles comprennent la résection chirurgicale de la tumeur, suivie d'une radiothérapie adjuvante ainsi que d'un traitement au temozolomide (RT/TMZ), thérapies dont résulte une médiane de survie globale basse (overall survival, OS), comprise entre 12.2 et 15.9 mois. On reconnaît de plus en plus le rôle majeur de l'ADN, de l'ARN et de l'altération des protéines ainsi que des modifications épigénétiques, secondaires par rapport au microenvironnement de la tumeur et à la pression de sélection extérieure (les interventions thérapeutiques). Dans le traitement du GBM, le centre d'intérêt se déplace vers une thérapie centrée sur le cas individuel du patient. Dans ce but, en particulier les microARN sont de plus en plus analysés. Les microARN sont de petits ARN non-codants (les protéines) qui servent de régulateurs négatifs de gènes en s'attachant à une séquence spécifique dans la région promotrice d'un gène-cible, régulant ainsi l'expression du gène. Un seul microARN cible potentiellement des centaines de gènes; on a ainsi découvert que les microARN et leurs gènes-cibles apparentés ont une fonction importante en tant que suppresseurs de tumeurs et d'oncogènes, ainsi que comme régulateurs de diverses caractéristiques cellulaires spécifiques du cancer, comme la prolifération, l'apoptose, l'invasion et la métastase. On peut s'attendre à ce que l'identification de réseaux microARN régulateurs de gènes, distincts selon les patients de GBM, fournisse une approche thérapeutique inédite par la détermination des patients susceptibles de réagir favorablement à des thérapies ciblées.
Resumo:
Histone H1 in the parasitic protozoan Leishmania is a developmentally regulated protein encoded by the sw3 gene. Here we report that histone H1 variants exist in different Leishmania species and strains of L. major and that they are encoded by polymorphic genes. Amplification of the sw3 gene from the genome of three strains of L. major gave rise to different products in each strain, suggesting the presence of a multicopy gene family. In L. major, these genes were all restricted to a 50-kb Bg/II fragment found on a chromosomal band of 1.3 Mb (chromosome 27). The detection of RFLPs in this locus demonstrated its heterogeneity within several species and strains of Leishmania. Two different copies of sw3 (sw3.0 and sw3.1) were identified after screening a cosmid library containing L. major strain Friedlin genomic DNA. They were identical in their 5' UTRs and open reading frames, but differed in their 3' UTRs. With respect to the originally cloned copy of sw3 from L. major strain LV39, their open reading frames lacked a repeat unit of 9 amino acids. Immunoblots of L. guyanensis parasites transfected with these cosmids revealed that both copies could give rise to the histone H1 protein. The characterization of this locus will now make possible a detailed analysis of the function of histone H1 in Leishmania, as well as permit the dissection of the molecular mechanisms governing the developmental regulation of the sw3 gene.
Resumo:
Conventional methods are sometimes insufficient to identify human bacterial pathogens, and alternative techniques, often molecular, are required. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) identified with a valid score 45.9% of 410 clinical isolates from 207 different difficult-to-identify species having required 16S rRNA gene sequencing. MALDI-TOF MS might represent an alternative to 16S rRNA gene sequencing.
Resumo:
Understanding how plants sense and respond to heat stress is central to improve crop tolerance and productivity. Recent findings in Physcomitrella patensdemonstrated that the controlled passage of calcium ions across the plasma membrane regulates the heat shock response (HSR). To investigate the effect of membrane lipid composition on the plant HSR, we acclimated P. patens to a slightly elevated yet physiological growth temperature and analysed the signature of calcium influx under a mild heat shock. Compared to tissues grown at 22°C, tissues grown at 32°C had significantly higher overall membrane lipid saturation level and, when submitted to a short heat shock at 35°C, displayed a noticeably reduced calcium influx and a consequent reduced heat shock gene expression. These results show that temperature differences, rather than the absolute temperature, determine the extent of the plant HSR and indicate that membrane lipid composition regulates the calcium-dependent heat-signaling pathway.
Resumo:
Abstract Bacterial genomes evolve through mutations, rearrangements or horizontal gene transfer. Besides the core genes encoding essential metabolic functions, bacterial genomes also harbour a number of accessory genes acquired by horizontal gene transfer that might be beneficial under certain environmental conditions. The horizontal gene transfer contributes to the diversification and adaptation of microorganisms, thus having an impact on the genome plasticity. A significant part of the horizontal gene transfer is or has been facilitated by genomic islands (GEIs). GEIs are discrete DNA segments, some of which are mobile and others which are not, or are no longer mobile, which differ among closely related strains. A number of GEIs are capable of integration into the chromosome of the host, excision, and transfer to a new host by transformation, conjugation or transduction. GEIs play a crucial role in the evolution of a broad spectrum of bacteria as they are involved in the dissemination of variable genes, including antibiotic resistance and virulence genes leading to generation of hospital 'superbugs', as well as catabolic genes leading to formation of new metabolic pathways. Depending on the composition of gene modules, the same type of GEIs can promote survival of pathogenic as well as environmental bacteria.
Resumo:
The human T-cell leukemia virus type 1 (HTLV-1) Tax protein activates viral transcription through three 21-bp repeats located in the U3 region of the HTLV-1 long terminal repeat and called Tax-responsive elements (TxREs). Each TxRE contains nucleotide sequences corresponding to imperfect cyclic AMP response elements (CRE). In this study, we demonstrate that the bZIP transcriptional factor CREB-2 is able to bind in vitro to the TxREs and that CREB-2 binding to each of the 21-bp motifs is enhanced by Tax. We also demonstrate that Tax can weakly interact with CREB-2 bound to a cellular palindromic CRE motif such as that found in the somatostatin promoter. Mutagenesis of Tax and CREB-2 demonstrates that both N- and C-terminal domains of Tax and the C-terminal region of CREB-2 are required for direct interaction between the two proteins. In addition, the Tax mutant M47, defective for HTLV-1 activation, is unable to form in vitro a ternary complex with CREB-2 and TxRE. In agreement with recent results suggesting that Tax can recruit the coactivator CREB-binding protein (CBP) on the HTLV-1 promoter, we provide evidence that Tax, CREB-2, and CBP are capable of cooperating to stimulate viral transcription. Taken together, our data highlight the major role played by CREB-2 in Tax-mediated transactivation.
Resumo:
Inherited metabolic disorders are the cause of a small but significant number of sudden unexpected deaths in infancy. We report a girl who suddenly died at 11 months of age, during an intercurrent illness. Autopsy showed spongiform lesions in the subcortical white matter, in the basal ganglia, and in the dentate nuclei. Investigations in an older sister with developmental delay, ataxia, and tremor revealed L-2-hydroxyglutaric aciduria and subcortical white matter changes with hyperintensity of the basal ganglia and dentate nuclei at brain magnetic resonance imaging. Both children were homozygous for a splice site mutation in the L2HGDH gene. Sudden death has not been reported in association with L-2-hydroxyglutaric aciduria so far, but since this inborn error of metabolism is potentially treatable, early diagnosis may be important.
Resumo:
The Zein-2 component named Zc 1 corresponds to a storage protein of an apparent M.W. of 16 kDa present in maize endosperm.
Resumo:
The Zein-2 component named Zc 1 corresponds to a storage protein of an apparent M.W. of 16 kDa present in maize endosperm.
Resumo:
Mutations in RPE65 protein is characterized by the loss of photoreceptors, although the molecular pathways triggering retinal cell death remain largely unresolved. The role of the Bcl-2 family of proteins in retinal degeneration is still controversial. However, alteration in Bcl-2-related proteins has been observed in several models of retinal injury. In particular, Bax has been suggested to play a crucial role in apoptotic pathways in murine glaucoma model as well as in retinal detachment-associated cell death. We demonstrated that Bcl-2-related signaling pathway is involved in Rpe65-dependent apoptosis of photoreceptors during development of the disease. Pro-apoptotic Bax alpha and beta isoforms were upregulated in diseased retina. This was associated with a progressive reduction of anti-apoptotic Bcl-2, reflecting imbalanced Bcl-2/Bax ratio as the disease progresses. Moreover, specific translocation of Bax beta from cytosol to mitochondria was observed in Rpe65-deficient retina. This correlated with the initiation of photoreceptor cell loss at 4 months of age, and further increased during disease development. Altogether, these data suggest that Bcl-2-apoptotic pathway plays a crucial role in Leber's congenital amaurosis disease. They further highlight a new regulatory mechanism of Bax-dependent apoptosis based on regulated expression and activation of specific isoforms of this protein.
Resumo:
Tenascin-C (TNC) expression is known to correlate with malignancy in glioblastoma (GBM), a highly invasive and aggressive brain tumor that shows limited response to conventional therapies. In these malignant gliomas as well as in GBM cell lines, we found Notch2 protein to be strongly expressed. In a GBM tumor tissue microarray, RBPJk protein, a Notch2 cofactor for transcription, was found to be significantly coexpressed with TNC. We show that the TNC gene is transactivated by Notch2 in an RBPJk-dependent manner mediated by an RBPJk binding element in the TNC promoter. The transactivation is abrogated by a Notch2 mutation, which we detected in the glioma cell line Hs683 that does not express TNC. This L1711M mutation resides in the RAM domain, the site of interaction between Notch2 and RBPJk. In addition, transfection of constructs encoding activated Notch2 or Notch1 increased endogenous TNC expression identifying TNC as a novel Notch target gene. Overexpression of a dominant negative form of the transcriptional coactivator MAML1 or knocking down RBPJk in LN319 cells led to a dramatic decrease in TNC protein levels accompanied by a significant reduction of cell migration. Because addition of purified TNC stimulated glioma cell migration, this represents a mechanism for the invasive properties of glioma cells controlled by Notch signaling and defines a novel oncogenic pathway in gliomagenesis that may be targeted for therapeutic intervention in GBM patients.
Resumo:
The aim of our work was to show how a chosen normal-isation strategy can affect the outcome of quantitative gene expression studies. As an example, we analysed the expression of three genes known to be upregulated under hypoxic conditions: HIF1A, VEGF and SLC2A1 (GLUT1). Raw RT-qPCR data were normalised using two different strategies: a straightforward normalisation against a single reference gene, GAPDH, using the 2(-ΔΔCt) algorithm and a more complex normalisation against a normalisation factor calculated from the quantitative raw data from four previously validated reference genes. We found that the two different normalisation strategies revealed contradicting results: normalising against a validated set of reference genes revealed an upregulation of the three genes of interest in three post-mortem tissue samples (cardiac muscle, skeletal muscle and brain) under hypoxic conditions. Interestingly, we found a statistically significant difference in the relative transcript abundance of VEGF in cardiac muscle between donors who died of asphyxia versus donors who died from cardiac death. Normalisation against GAPDH alone revealed no upregulation but, in some instances, a downregulation of the genes of interest. To further analyse this discrepancy, the stability of all reference genes used were reassessed and the very low expression stability of GAPDH was found to originate from the co-regulation of this gene under hypoxic conditions. We concluded that GAPDH is not a suitable reference gene for the quantitative analysis of gene expression in hypoxia and that validation of reference genes is a crucial step for generating biologically meaningful data.