980 resultados para Extraction of BR from Source Code


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Holes 1209A and 1211A on Southern High, Shatsky Rise contain expanded, nearly continuous records of carbonate-rich sediment deposited in deep water of the equatorial Pacific Ocean during the Paleocene and Eocene. In this study, we document intervals of carbonate dissolution in these records by examining temporal changes in four parameters: carbonate content, coarse size fraction (>38 µm), benthic foraminiferal abundance, and planktonic foraminiferal fragmentation ratio. Carbonate content is not a sensitive indicator of carbonate dissolution in the studied sections, although rare intervals of low carbonate may reflect times of relatively high dissolution. The proportion of coarse size fraction does not accurately record carbonate dissolution either because the relative abundance of nannofossils largely determines the grain-size distribution. Benthic abundance and fragmentation covary (r**2 = 0.77) and are probably the best indicators for carbonate dissolution. For both holes, records of these parameters indicate two episodes of prominent dissolution. The first of these occurs in the upper Paleocene (~59-58 Ma) and the second in the middle to upper Eocene (~45-33.7 Ma). Other intervals of enhanced carbonate dissolution are located in the upper Paleocene (~56 Ma) and in the upper lower Eocene (~51 Ma). Enhanced preservation of planktonic foraminiferal assemblages marks the start of both the Paleocene and Eocene epochs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report 261 strontium isotopic analyses of well-preserved planktonic foraminifers from three Deep Sea Drilling Project Sites (519, 588, and 607). These samples cover the period from 24 Ma to present with an average of approximately one sample per 100 ka. The combination of high sample density and uniformity of analytical procedures has produced a well-defined record of changes in the 87Sr/86Sr of seawater during the Neogene. The record can be viewed as a series of essentially linear segments with slopes ranging from as high as 0.00006/m.y. to as low as 0/m.y. The times associated with major inflections in the curve do not appear to correspond to simple geologic phenomena such as eustatic cycles, but are probably controlled by a combination of tectonic and climatic factors that influenced the abundance and isotopic composition of terrestrial strontium input to the oceans. The strontium isotopic data are consistent with a progressive increase in the chemical weathering rates of the continents during the Neogene, probably related to repeated glaciations, increased exposure of continents by lowered sea level, and increased continental relief resulting from high rates of tectonic uplift.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peridotite samples recovered from IODP Site U1309 at the Atlantis Massif in the Mid-Atlantic Ridge were examined to understand magmatic processes for the oceanic core complex formation. Original peridotite was fragmented, and the limited short peridotite intervals are now surrounded by a huge gabbro body probably formed by late-stage melt injections. Each peridotite interval has various petrographical and geochemical features. A spinel harzburgite in contact with gabbro shows evidence of limited melt penetrations causing gradual compositional change, in terms of trace-element compositions of pyroxenes, as well as modal change near the boundary. Geochemistry of clinopyroxenes with least melt effects indicates that the harzburgite is originally mantle residue formed by partial melting under polybaric conditions, and that such a depleted peridotite is one of the components of the oceanic core complex. Some of plagioclase-bearing peridotites, on the other hand, have more complicated origin. Although their original features were partly overprinted by the injected melt, the original peridotites, both residual and non-residual materials, were possibly derived from the upper mantle. This suggests that the melt injected around an upper mantle region or into mantle material fragments. The injected melt was possibly generated at the ridge-segment center and, then, moved and evolved toward the segment end beneath the oceanic core complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Gangdese belt, Tibet, records the opening and closure of the Neo-Tethyan ocean and the resultant collision between the Indian and Eurasian plates. Mesozoic magmatic rocks generated through subduction of the Tethyan oceanic slab constitute the main component of the Gangdese belt, and play a crucial role in understanding the formation and evolution of the Neo-Tethyan tectonic realm. U-Pb and Lu-Hf isotopic data for tonalite and granodiorite from the Xietongmen-Nymo segment of the Gangdese belt indicate a significant pulse of Jurassic magmatism from 184 Ma to 168 Ma. The magmatic rocks belong to metaluminous medium-K calc-alkaline series, characterized by regular variation in major element compositions with SiO2 of 61.35%-73.59 wt%, low to moderate MgO (0.31%-2.59%) with Mg# of 37-45. These magmatic rocks are also characterized by LREE enrichment with concave upward trend in MREE on the chondrite-normalized REE patterns, and also LILE enrichment and depletion in Nb, Ta and Ti in the primitive mantle normalized spidergrams. These rocks have high zircon ?Hf(t) values of + 10.94 to + 15.91 and young two-stage depleted mantle model ages (TDM2) of 192 Ma to 670 Ma. The low MgO contents and relatively depleted Hf isotope compositions, suggest that the granitoid rocks were derived from the partial melting of the juvenile basaltic lower crust with minor mantle materials injected. In combined with the published data, it is suggested that northward subduction of the Neo-Tethyan slab beneath the Lhasa terrane began by the Late-Triassic, which formed a major belt of arc-related magmatism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolution of environmental changes during the last decades and the impact on the living biomass in the western part of Amvrakikos Gulf was investigated using abundances and species distributions of benthic foraminifera and lipid biomarker concentrations. These proxies indicated that the gulf has markedly changed due to eutrophication. Eutrophication has led to a higher productivity, a higher bacterial biomass, shifts towards opportunistic and tolerant benthic foraminifera species (e.g. Bulimina elongata, Nonionella turgida, Textularia agglutinans, Ammonia tepida) and a lower benthic species density. Close to the Preveza Strait (connection between the gulf and the Ionian Sea), the benthic assemblages were more diversified under more oxygenated conditions. Sea grass meadows largely contributed to the organic matter at this sampling site. The occurrence of isorenieratane, chlorobactane and lycopane supported by oxygen monitoring data indicated that anoxic (and partly euxinic) conditions prevailed seasonally throughout the western part of the gulf with more severe oxygen depletion towards the east. Increased surface water temperatures have led to a higher stratification, which reduced oxygen resupply to bottom waters. Altogether, these developments led to mass mortality events and ecosystem decline in Amvrakikos Gulf.