978 resultados para Extracellular polysaccharide
Resumo:
RESUMO:Contexto: A avaliação do estado de nutrição do doente com indicação para transplante hepático (TH) deve ser abrangente, considerando o amplo espetro de situações clínicas e metabólicas. As alterações metabólicas relacionadas com a doença hepática podem limitar a aplicação de métodos de avaliação nutricional, subestimando a desnutrição. Após o TH, é expectável a reversão dos distúrbios metabólicos da doença hepática, pela melhoria da função do fígado. No entanto, algumas complicações metabólicas podem surgir após o TH, relacionadas com a má-nutrição, a desnervação hepática e o uso prolongado de imunossupressão, comprometendo os resultados clínicos a longo-prazo. A medição longitudinal e confiável do metabolismo energético e dos compartimentos corporais após o TH, avaliada em conjunto com fatores influentes no estado de nutrição, pode identificar precocemente situações de risco e otimizar e individualizar estratégias clínicas e nutricionais com vantagens no prognóstico. Objetivo: Avaliar longitudinalmente, a curto prazo, o estado de nutrição após o TH em doentes com insuficiência hepática por doença crónica e identificar os fatores, para além da cirurgia, que determinam diferentes evoluções do metabolismo energético e da composição corporal. Métodos: Foi estudada uma coorte de indivíduos com indicação para TH por doença hepática crónica, admitidos consecutivamente para TH ortotópico eletivo, durante 2 anos. Foram programados 3 momentos de avaliação: na última consulta pré-TH (T0), logo que adquirida autonomia respiratória e funcional após o TH (T1) e um mês após o TH (T2). Nesses momentos, foram medidos no mesmo dia: o suprimento nutricional por recordatório das últimas 24 horas, o estado de nutrição por Avaliação Subjetiva Global (ASG), o gasto energético em repouso (GER) por calorimetria indireta, a antropometria, a composição corporal por bioimpedância elétrica tetrapolar multifrequências e a força muscular por dinamometria de preensão palmar. O índice de massa magra (IMM) e a massa celular corporal (MCC) foram usados como indicadores do músculo esquelético e a percentagem de massa gorda (%MG) e o índice de massa gorda (IMG) como indicadores de adiposidade. O GER foi comparado com o estimado pelas fórmulas de Harris-Benedict para classificação do estado metabólico em:hipermetabolismo (GER medido >120% do GER estimado), normometabolismo (GER medido entre 80 e 120% do GER estimado) e hipometabolismo (GER medido <80% do GER estimado). Foi utilizada análise multivariável: por regressão logística, para identificar variáveis associadas à possibilidade (odds ratio – OR) de pertencer a cada grupo metabólico pré-TH; por regressão linear múltipla, para identificar variáveis associadas à variação dos compartimentos corporais no período pós-TH; e por modelos de efeitos mistos generalizados, para identificar variáveis associadas à evolução do GER e dos compartimentos corporais entre o período pré- e pós-TH. Resultados: Foram incluídos 56 indivíduos com idade, média (DP), 53,7 (8,5) anos, 87,5% do sexo masculino, 23,2% com doença hepática crónica de etiologia etanólica. Após o TH, em 60,7% indivíduos foi administrado regime imunossupressor baseado no tacrolimus. Os indivíduos foram avaliados [mediana (AIQ)] 90,5 (P25: 44,2; P75: 134,5) dias antes do TH (T0), 9,0 (P25: 7,0; P75: 12,0) dias após o TH (T1) e 36,0 (P25: 31,0; P75: 43,0) dias após o TH (T2). Após o TH houve melhoria significativa do estado de nutrição, com diminuição da prevalência de desnutrição classificada pela ASG (37,5% em T0, 16,1% em T2, p<0,001). Antes do TH, 41,1% dos indivíduos eram normometabólicos, 37,5% hipometabólicos e 21,4% hipermetabólicos. A possibilidade de pertencer a cada grupo metabólico pré-TH associou-se à: idade (OR=0,899, p=0,010) e desnutrição pela ASG (OR=5,038, p=0,015) para o grupo normometabólico; e índice de massa magra (IMM, OR=1,264, p=0,049) e etiologia viral da doença hepática (OR=8,297, p=0,019) para o grupo hipermetabólico. Não se obteve modelo múltiplo para o grupo de hipometabólico pré-TH, mas foram identificadas associações univariáveis com a história de toxicodependência (OR=0,282, p=0,047) e com a sarcopénia pré- TH (OR=8,000, p=0,040). Após o TH, houve normalização significativa e progressiva do estado metabólico, indicada pelo aumento da prevalência de normometabolismo (41,1% em T0, 57,1% em T2, p=0,040). Foram identificados diferentes perfis de evolução do GER após o TH, estratificado pelo estado metabólico pré-TH: no grupo hipometabólico pré-TH, o GER (Kcal) aumentou significativa e progressivamente (1030,6 em T0; 1436,1 em T1, p=0,001; 1659,2 em T2, p<0,001); no grupo hipermetabólico pré-TH o GER diminuiu significativa e progressivamente (2097,1 em T0; 1662,5 em T1, p=0,024; 1493,0 em T2, p<0.001); no grupo normometabólico não houve variações significativas. Os perfis de evolução do GER associaram-se com: peso corporal (β=9,6, p<0,001) e suprimento energético (β=13,6, p=0,005) na amostra total; com peso corporal (β=7,1, p=0,018) e contributo energético dos lípidos (β=18,9, p=0,003) no grupo hipometabólico pré-TH; e com peso corporal (β=14,1, p<0,001) e desnutrição pela ASG (β=-171,0, p=0,007) no grupo normometabólico pré-TH.Houve redução transitória dos compartimentos corporais entre T0 e T1, mas a maioria destes recuperou para valores semelhantes aos pré-TH. As exceções foram a água extracelular, que diminuiu entre T0 e T2 (média 18,2 L e 17,8 L, p=0,042), a massa gorda (média 25,1 Kg e 21,7 Kg, p<0,001) e o IMG (média 10,6 Kg.m-2 e 9,3 Kg.m-2, p<0,001) que diminuíram entre T1 e T2. Relativamente à evolução dos indicadores de músculo esquelético e adiposidade ao longo do estudo: a evolução do IMM associou-se com força de preensão palmar (β=0,06, p<0,001), creatininémia (β=2,28, p<0,001) e número total de fármacos administrados (β=-0,21, p<0,001); a evolução da MCC associou-se com força de preensão palmar (β=0,16, p<0,001), creatininémia (β=4,17, p=0,008) e número total de fármacos administrados (β=-0,46, p<0,001); a evolução da %MG associou-se com força de preensão palmar (β=-0,11, p=0,028), história de toxicodependência (β=-5,75, p=0,024), creatininémia (β=-5,91, p=0,004) e suprimento proteico (β=-0,06, p=0,001); a evolução do IMG associou-se com história de toxicodependência (β=- 2,64, p=0,019), creatininémia (β=-2,86, p<0,001) e suprimento proteico (β=-0,02, p<0,001). A variação relativa (%Δ) desses compartimentos corporais entre T1 e T2 indicou o impacto da terapêutica imunossupressora na composição corporal: o regime baseado na ciclosporina associou-se positivamente com a %Δ do IMM (β=23,76, p<0,001) e %Δ da MCC (β=26,58, p<0,001) e negativamente com a %Δ MG (β=-25,64, p<0,001) e %Δ do IMG (β=-25,62, p<0,001), relativamente ao regime baseado no tacrolimus. Os esteróides não influenciaram a evolução do GER nem com a dos compartimentos corporais. Conclusões: O estado de nutrição, avaliado por ASG, melhorou significativamente após o TH, traduzida pela diminuição da prevalência de desnutrição. O normometabolismo pré-TH foi prevalente e associou-se à menor idade e à desnutrição pré- TH. O hipometabolismo pré-TH associou-se à história de toxicodependência e à sarcopénia pré-TH. O hipermetabolismo pré-TH associou-se ao maior IMM e à etiologia viral da doença hepática. Após o TH, houve normalização progressiva do estado metabólico. Foram identificados três perfis de evolução do GER, associando-se com: peso corporal e suprimento energético na amostra total; peso corporal e contributo energético dos lípidos no grupo hipometabólico pré- TH; e peso corporal e desnutrição pela ASG no grupo normometabólico pré-TH. Foram identificados diferentes perfis de evolução da composição corporal após TH. A evolução do músculo esquelético associou-se positivamente com a força de preensão palmar e a creatininémia e negativamente com o número total de fármacos administrados. A evolução da adiposidade (%MG e IMG) associou-se inversamente com a história de toxicodependência, a creatininémia e o suprimento proteico; adicionalmente, a %MG associou-se inversamente com a força de preensão palmar. O regime baseado na ciclosporina associou-se independentemente com diminuição da adiposidade e aumento do músculo esquelético, comparativamente ao regime baseado no tacrolimus.---------------------------ABSTRACT:Background: The assessment of nutritional status in patients undergoing liver transplantation (LTx) should be comprehensive, accounting for the wide spectrum of the clinical and metabolic conditions. The metabolic disturbances related to liver disease may limit the precision and accuracy of traditional nutritional assessment methods underestimating the undernourishment. After LTx, it is expected that many metabolic derangements improve with the recovery of liver function. However, some metabolic complications arising after LTx, related to nutritional status, hepatic denervation, and prolonged immunosuppression, may compromise the longterm outcome. A reliable longitudinal assessment of both energy metabolism and body compartments after LTx, combined with assessments of other factors potentially affecting the nutritional status, may enable a better interpretation on the relationship between the metabolic and the nutritional status. These reliable assessments may precociously identify nutritional risk conditions and optimize and customize clinical and nutritional strategies improving the prognosis. Objective: To assess longitudinally the nutritional status shortly after orthotopic LTx in patients with chronic liver disease, and identify factors, beyond surgery, determining different energy metabolism and body composition profiles.Methods: A cohort of consecutive patients who underwent LTx due to chronic liver disease was studied within a period of two years. The assessments were performed in three occasions: at the last visit before LTx (T0), after surgery as soon as respiratory and functional autonomy was established (T1), and approximately one month after surgery (T2). On each occasion all assessments were performed on the same day, and included: the dietary assessment by 24- hour dietary recall, nutritional status by the Subjective Global Assessment (SGA), the resting energy expenditure (REE) by indirect calorimetry, anthropometry, body composition by multifrequency bioelectrical impedance analysis, and muscle strength by handgrip strength. Both the lean mass index (LMI) and body cell mass (BCM) were used as surrogates of skeletal muscle, and both the percentage of fat mass (%FM) and fat mass index (FMI) of adiposity. The REE was predicted according to the Harris and Benedict equation. Hypermetabolism was defined as a measured REE more than 120% of the predicted value; normometabolism as a measured REE within 80-120% of the predicted value; and hypometabolism as a measured REE less than 80% of the predicted value. Multiple regression analysis was used: by logistic regression to identify variables associated with odds of belong each pre-LTx metabolic groups; by linear multiple regression analysis to identify variables associated with body compartments relative variations (%Δ) in the post-LTx period; and by mixed effects models to identify variables associated with the REE and body compartments profiles pre- and post-LTx. Results: Fifty six patients with a mean (SD) of 53.7 (8.5) years of age were included, 87.5% were men and 23.2% with alcoholic liver disease. After LTx 60.7% individuals were assigned to tacrolimus-based immunosuppressive regimen. The patients were assessed at a median time (inter-quartil range) of 90.5 (P25 44.2; P75 134.5) days before LTx (T0), at a median time of 9.0 (P25 7.0; P75 12.0) (T1) and 36 (P25 31.0; P75 43.0) (T2) days after LTx. After LTx the nutritional status significantly improved: the SGA-undernourishment decreased from 37.5% (T0) to 16.1% (T2) (p<0.001). Before LTx, 41.1% patients were normometabolic, 37.5% hypometabolic, and 21.4% hypermetabolic. The predictors of each pre-LTx metabolic group were: age (OR=0.899, p=0.010) and SGA-undernourishment (OR=5.038, p=0.015) for the normometabolic group; and LMI (OR=1.264, p=0.049) and viral etiology of liver disease (OR=8.297, p=0.019) for the hypermetabolic group. No multiple model was found for the pre-LTx hypometabolic group, but univariate association was found with history of drug addiction (OR=0.282, p=0.047) and pre- LTx sarcopenia (OR=8.000, p=0.040). After LTx a significant normalization of the metabolic status occurred, indicated by the increase in the prevalence of normometabolic patients (from T0: 41.1% to T2: 57.1%, p=0.040). Different REE profiles were found with REE stratified by preoperative metabolic status: in the hypometabolic group a significant progressive increase in mean REE (Kcal) was observed (T0: 1030.6; T1: 1436.1, p=0.001; T2: 1659.2, p<0.001); in the hypermetabolic group, a significant progressive decrease in mean REE (Kcal) was observed (T0: 2097.1; T1: 1662.5, p=0.024; T2: 1493.0, p<0.001); and in the normometabolic group, no significant differences were found. The REE profiles were associated with: body weight (β- estimate=9.6, p<0.001) and energy intake (β-estimate=13.6, p=0.005) in the whole sample; with body weight (β-estimate=7.1, p=0.018) and %TEV from lipids (β-estimate=18.9, p=0.003) in the hypometabolic group; and with body weight (β-estimate=14.1, p<0.001), and SGAundernourishment (β-estimate=-171, p=0.007) in the normometabolic group. A transient decrease in most body compartments occurred from T0 to T1, with subsequent catch-up to similar preoperative values. Exceptions were the extracellular water, decreasing from T0 to T2 (mean 18.2 L to 17.8 L, p=0.042), the fat mass (mean 25.1 Kg to 21.7 Kg, p<0.001) and FMI (mean 10.6 Kg.m-2 to 9.3 Kg.m-2, p<0.001), decreasing from T1 to T2. Significant predictors of skeletal muscle and adiposity profiles were found: LMI evolution was associated with handgrip strength (β-estimate=0.06, p<0.001), serum creatinine (β- estimate=2.28, p<0.001) and number of medications (β-estimate=-0.21, p<0.001); BCM evolution was associated with handgrip strength (β-estimate=0.16, p<0.001), serum creatinine (β-estimate=4.17, p<0.001) and number of medications (β-estimate=-0.46, p<0.001); the %FM evolution was associated with handgrip strength (β-estimate=-0.11, p=0.028), history of drug addiction (β-estimate=-5.75, p=0.024), serum creatinine (β-estimate=-5.91, p=0.004) and protein intake (β-estimate=-0.06, p=0.001); and FMI evolution was associated with history of drug addiction (β-estimate=-2.64, p=0.019), serum creatinine (β-estimate=-2.86, p<0.001) and protein intake (β-estimate=-0.02, p<0.001). The %Δ of the aforementioned body compartments from T1 to T2 indicated the influence of immunosuppressive agents on body composition: the cyclosporine-based regimen, compared with tacrolimus-based regimen, was positively associated with %Δ LMI (β-estimate=23.76, p<0.001) and %Δ BCM (β- estimate=26.58, p<0.001), and inversely associated with %Δ FM (β-estimate=-25.64, p<0.001) and %Δ FMI (β-estimate=-25.62, p<0.001). No significant changes in REE or body composition were observed associated with dose or duration of steroid therapy. Conclusions: The SGA-assessed nutritional status improved shortly after LTx, with significant decrease in prevalence undernourished individuals. XXI Preoperative normometabolism was prevalent and was associated with younger age and SGAundernourishment before LTx. Preoperative hypometabolism was associated with history of drug addiction and pre-LTx sarcopenia. Preoperative hypermetabolism was associated with higher LMI and viral etiology of liver disease. A significant normalization of the metabolic status was observed after LTx. The REE profiles were positively predicted by body weight and energy intake in the whole sample, by body weight and percentage of energy intake from lipids in the preoperative hypometabolic patients, and by body weight and SGA–undernourishment in the preoperative normometabolic patients. Different body composition profiles were found after LTx. Skeletal muscle profile was positively associated with handgrip strength and serum creatinine, and inversely with the number of medications. The adiposity profile was inversely associated with history of drug addiction, serum creatinine and protein intake. Additionally, the %FM evolution was inversely associated with handgrip strength. The cyclosporine-based regimen, compared with tacrolimus-based regimen, was independently associated with skeletal muscle increase and adiposity decrease.
Resumo:
The advent of bioconjugation impacted deeply the world of sciences and technology. New biomolecules were found, biological processes were understood, and novel methodologies were formed due to the fast expansion of this area. The possibility of creating new effective therapies for diseases like cancer is one of big applications of this now big area of study. Off target toxicity was always the problem of potent small molecules with high activity towards specific tumour targets. However, chemotherapy is now selective due to powerful linkers that connect targeting molecules with affinity to interesting biological receptors and cytotoxic drugs. This linkers must have very specific properties, such as high stability in plasma, no toxicity, no interference with ligand affinity nor drug potency, and at the same time, be able to lyse once inside the target molecule to release the therapeutic warhead. Bipolar environments between tumour intracellular and extracellular medias are usually exploited by this linkers in order to complete this goal. The work done in this thesis explores a new model for that same task, specific cancer drug delivery. Iminoboronates were studied due to its remarkable selective stability towards a wide pH range and endogenous molecules. A fluorescence probe was design to validate this model by creating an Off/On system and determine the payload release location in situ. A process was optimized to synthetize the probe 8-(1-aminoethyl)-7-hydroxy-coumarin (1) through a reductive amination reaction in a microwave reactor with 61 % yield. A method to conjugate this probe to ABBA was also optimized, obtaining the iminoboronate in good yields in mild conditions. The iminoboronate model was studied regarding its stability in several simulated biological environments and each half-life time was determined, showing the conjugate is stable most of the cases except in tumour intracellular systems. The construction of folate-ABBA-coumarin bioconjugate have been made to complete this evaluation. The ability to be uptaken by a cancer cell through endocytosis process and the conjugation delivery of coumarin fluorescence payload are two features to hope for in this construct.
Resumo:
RESUMO: Actualmente, a única possibilidade de cura para doentes com adenocarcinoma do pâncreas (PDAC) é a ressecção cirúrgica, no início deste estudo, perguntamo-nos se os predictores clínico-patológicos clássicos de prognostico poderiam ser validados em uma grande cohort de doentes com cancro do pâncreas ressecável e se outros predictores clínicos poderiam ter um papel na decisão de que doentes beneficiariam de ressecção cirúrgica. No capítulo 2, observamos que até 30% dos doentes morrem no primeiro ano após a ressecção cirúrgica, pelo que o nosso objectivo foi determinar factores pré-operatórios que se correlacionam com mortalidade precoce após ressecação cirúrgica com recurso a um instrumento estatisticamente validado, o Charlson-Age Comorbidity Index (CACI), determinamos que um CACI score superior a 4 foi preditivo de internamentos prolongados (p <0,001), complicações pós-operatórias (p = 0,042), e mortalidade em 1 ano pós- ressecção cirúrgica (p <0,001). Um CACI superior a 6 triplicou a mortalidade no primeiro ano pós-cirurgia e estes doentes têm menos de 50% de probabilidade de estarem vivos um ano após a cirurgia. No capítulo 3, o nosso objectivo foi identificar uma proteína de superfície que se correlacionasse estatisticamente com o prognostico de doentes com adenocarcinoma do pâncreas e permitisse a distinção de subgrupos de doentes de acordo com as suas diferenças moleculares, perguntamo-nos ainda se essa proteína poderia ser um marcador de células-estaminais. No nosso trabalho anterior observamos que as células tumorais na circulação sanguínea apresentavam genes com características bifenotípica epitelial e mesenquimal, enriquecimento para genes de células estaminais (ALDH1A1 / ALDH1A2 e KLF4), e uma super-expressão de genes da matriz extracelular (colagénios, SPARC, e DCN) normalmente identificados no estroma de PDAC. Após a avaliação dos tumores primários com RNA-ISH, muitos dos genes identificados, foram encontrados co-localizando em uma sub-população de células na região basal dos ductos pancreáticos malignos. Além disso, observamos que estas células expressam o marcador SV2A neuroendócrino, e o marcador de células estaminais ALDH1A1/2. Em comparação com tumores negativos para SV2, os doentes com tumores SV2 positivos apresentaram níveis mais baixos de CA 19-9 (69% vs. 52%, p = 0,012), tumores maiores (> 4 cm, 23% vs. 10%, p = 0,0430), menor invasão de gânglios linfáticos (69% vs. 86%, p = 0,005) e tumores mais diferenciados (69% vs. 57%, p = 0,047). A presença de SV2A foi associada com uma sobrevida livre de doença mais longa (HR: 0,49 p = 0,009) bem como melhor sobrevida global (HR: 0,54 p = 0,018). Em conjunto, esta informação aponta para dois subtipos diferentes de adenocarcinoma do pâncreas, e estes subtipos co-relacionam estatisticamente com o prognostico de doentes, sendo este subgrupo definido pela presença do clone celular SV2A / ALDH1A1/2 positivo com características neuroendócrinas. No Capítulo 4, a expressão de SV2A no cancro do pâncreas foi validado em linhas celulares primárias. Demonstramos a heterogeneidade do adenocarcinoma do pâncreas de acordo com características clonais neuroendócrinas. Ao comparar as linhas celulares expressando SV2 com linhas celulares negativas, verificamos que as linhas celulares SV2+ eram mais diferenciadas, diferindo de linhas celulares SV2 negativas no que respeita a mutação KRAS, proliferação e a resposta à quimioterapia. No capítulo 5, perguntamo-nos se o clone celular SV2 positivo poderia explicar a resistência a quimioterapia observada em doentes. Observamos um aumento absoluto de clones celulares expressando SV2A, em múltiplas linhas de evidência - doentes, linhas de células primárias e xenotransplantes. Embora, tenhamos sido capazes de demonstrar que o adenocarcinoma do pâncreas é uma doença heterogénea, consideramos que a caracterização genética destes clones celulares expressando SV2A é de elevada importância. Pretendemos colmatar esta limitação com as seguintes estratégias: Após o tratamento com quimioterapia neoadjuvante na nossa coorte, realizamos microdissecação a laser das amostras primarias em parafina, de forma a analisar mutações genéticas observadas no adenocarcinoma pancreático; em segundo lugar, pretendemos determinar consequências de knockdown da expressão de SV2A em nossas linhas celulares seguindo-se o tratamento com gemicitabina para determinação do papel funcional de SV2A; finalmente, uma vez que os nossos esforços anteriores com um promotor - repórter e SmartFlare ™ falharam, o próximo passo será realizar RNA-ISH PrimeFlow™ seguido de FACS e RNA-seq para caracterização deste clone celular. Em conjunto, conseguimos provar com várias linhas de evidência, que o adenocarcinoma pancreático é uma doença heterogénea, definido por um clone de células que expressam SV2A, com características neuroendócrinas. A presença deste clone no tecido de doentes correlaciona-se estatisticamente com o prognostico da doença, incluindo sobrevida livre de doença e sobrevida global. Juntamente com padrões de proliferação e co-expressão de ALDH1A1/2, este clone parece apresentar um comportamento de células estaminais e está associado a resistência a quimioterapia, uma vez que a sua expressão aumenta após agressão química, quer em doentes, quer em linhas de células primárias.----------------------------- ABSTRACT: Currently, the only chance of cure for patients with pancreatic adenocarcinoma is surgical resection, at the beginning of my thesis studies, we asked if the classical clinicopathologic predictors of outcome could be validated in a large cohort of patients with early stage pancreatic cancer and if other clinical predictors could have a role on deciding which patients would benefit from surgery. In chapter 2, we found that up to 30% of patients die within the first year after curative intent surgery for pancreatic adenocarcinoma. We aimed at determining pre-operative factors that would correlate with early mortality following resection for pancreatic cancer using a statistically validated tool, the Charlson-Age Comorbidity Index (CACI). We found that a CACI score greater than 4 was predictive of increased length of stay (p<0.001), post-operative complications (p=0.042), and mortality within 1-year of pancreatic resection (p<0.001). A CACI score of 6 or greater increased 3-fold the odds of death within the first year. Patients with a high CACI score have less than 50% likelihood of being alive 1 year after surgery. In chapter 3 we aimed at identifying a surface protein that correlates with patient’s outcome and distinguishes sub-groups of patients according to their molecular differences and if this protein could be a cancer stem cell marker. The most abundant class of circulating tumor cells identified in our previous work was found to have biphenotypic features of epithelial to mesenchymal transition, enrichment for stem-cell associated genes (ALDH1A1/ALDH1A2 and KLF4), and an overexpression of extracellular matrix genes (Collagens, SPARC, and DCN) normally found in the stromal microenvironment of PDAC primary tumors. Upon evaluation of matched primary tumors with RNA-ISH, many of the genes identified were found to co-localize in a sub-population of cells at the basal region of malignant pancreatic ducts. In addition, these cells expressed the neuroendocrine marker SV2A, and the stem cell marker ALDH1A1/2. Compared to SV2 negative tumors, patients with SV2 positive tumors were more likely to present with lower CA 19-9 (69% vs. 52%, p = 0.012), bigger tumors (size > 4 cm, 23% vs. 10%, p= 0.0430), less nodal involvement (69% vs. 86%, p = 0.005) and lower histologic grade (69% vs. 57%, p = 0.047). The presence of SV2A expressing cells was associated with an improved disease free survival (HR: 0.49 p=0.009) and overall survival (HR: 0.54 p=0.018) and correlated linearly with ALDH1A2. Together, this information points to two different sub-types of pancreatic adenocarcinoma, and these sub-types correlated with patients’ outcome and were defined by the presence of a SV2A/ ALDH1A1/2 expressing clone with neuroendocrine features. In Chapter 4, SV2A expression in cancer was validated in primary cell lines. We were able to demonstrate pancreatic adenocarcinoma heterogeneity according to neuroendocrine clonal features. When comparing SV2 expressing cell lines with SV2 negative cell lines, we found that SV2+ cell lines were more differentiated and differ from SV2 negative cell lines regarding KRAS mutation, proliferation and response to chemotherapy. In Chapter 5 we aimed at determining if this SV2 positive clone could explain chemoresistance observed in patients. We found an absolute increase in SV2A expressing cells, with multiple lines of evidence, in patients, primary cell lines and xenografts. Although, we have been able to show evidence that pancreatic adenocarcinoma is a heterogeneous disease, our findings warrant further investigation. To further characterize SV2A expressing clones after treatment with neoadjuvant chemotherapy in our cohort, we have performed laser capture microdissection of the paraffin embedded tissue in this study and will analyze the tissue for known genetic mutations in pancreatic adenocarcinoma; secondly, we want to know what will happen after knocking down SV2A expression in our cell lines followed by treatment with gemcitabine to determine if SV2A is functionally important; finally, since our previous efforts with a promoter – reporter and SmartFlare™ have failed, we will utilize a novel PrimeFlow™ RNA-ISH assay followed by FACS and RNA sequencing to further characterize this cellular clone. Overall our data proves, with multiple lines of evidence, that pancreatic adenocarcinoma is a heterogeneous disease, defined by a clone of SV2A expressing cells, with neuroendocrine features. The presence of this clone in patients’ tissue correlates with patient’s disease free survival and overall survival. Together with patterns of proliferation and ALDH1A1/2 co-expression, this clone seems to present a stem-cell-like behavior and is associated with chemoresistance, since it increases after chemotherapy, both in patients and primary cell lines.
Resumo:
Heme, i.e. iron (Fe) protoporphyrin IX, functions as a prosthetic group in a variety of hemoproteins that participate in vital biologic functions essential to sustain life. Heme is a highly reactive molecule, participating in redox reactions, and presumably for this reason it must be sequestered within the heme pockets of hemoproteins, controlling its reactivity. However, under biological stress conditions, hemoproteins can release their prosthetic groups, generating “free heme”, which binds loosely to proteins or to other molecules and presumably acquires unfettered redox activity. Moreover, a growing body of evidence supports the notion that “free heme” can act in a vasoactive, pro-inflammatory and cytotoxic manner when released from a subset of these hemoproteins, such as extracellular hemoglobin, generated during hemolytic conditions. (...)
Resumo:
Tissue-to-tissue interfaces are commonly present in all tissues exhibiting structural, biological and chemical gradients serving a wide range of physiological functions. These interfaces are responsible for mediation of load transfer between two adjacent tissues. They are also important structures in sustaining the cellular communications to retain tissueâ s functional integration and homeostasis. [1] All cells have the capacity to sense and respond to physical and chemical stimulus and when cultured in three-dimensional (3D) environments they tend to perform their function better than in two-dimensional (2D) environments. Spatial and temporal 3D gradient hydrogels better resemble the natural environment of cells in mimicking their extracellular matrix. [2] In this study we hypothesize that differential functional properties can be engineered by modulation of macromolecule gradients in a cell seeded threedimensional hydrogel system. Specifically, differential paracrine secretory profiles can be engineered using human Bone Marrow Stem Cells (hBMSCâ s). Hence, the specific objectives of this study are to: assemble the macromolecular gradient hydrogels to evaluate the suitablity for hBMSCâ s encapsulation by cellular viability and biofunctionality by assessing the paracrine secretion of hBMSCâ s over time. The gradient hydrogels solutions were prepared by blend of macromolecules in one solution such as hyaluronic (HA) acid and collagen (Col) at different ratios. The gradient hydrogels were fabricated into cylindrical silicon moulds with higher ratio solutions assembled at the bottom of the mould and adding the two solutions consecutively on top of each other. The labelling of the macromolecules was performed to confirm the gradient through fluorescence microscopy. Additionally, AFM was conducted to assess the gradient hydrogels stiffness. Gradient hydrogels characterization was performed by HA and Col degradation assay, degree of crosslinking and stability. hBMSCâ s at P3 were encapsulated into each batch solution at 106 cells/ml solution and gradient hydrogels were produced as previously described. The hBMSCâ s were observed under confocal microscopy to assess viability by Live/Dead® staining. Cellular behaviour concerning proliferation and matrix deposition was also performed. Secretory cytokine measurement for pro-inflammatory and angiogenesis factors was carried out using ELISA. At genomic level, qPCR was carried out. The 3D gradient hydrogels platform made of different macromolecules showed to be a suitable environment for hBMSCâ s. The hBMSCâ s gradient hydrogels supported high cell survival and exhibited biofunctionality. Besides, the 3D gradient hydrogels demonstrated differentially secretion of pro-inflammatory and angiogenic factors by the encapsulated hBMSCâ s. References: 1. Mikos, AG. et al., Engineering complex tissues. Tissue Engineering 12,3307, 2006 2. Phillips, JE. et al., Proc Natl Acad Sci USA, 26:12170-5, 2008
Resumo:
Marine organisms are rich in a variety of materials with potential use in Tissue Engineering and Regenerative Medicine. One important example is fucoidan, a sulfated polysaccharide extracted from the cell wall of brown seaweeds. Fucoidan is composed by L-fucose, sulfate groups and glucuronic acid. It has important bioactive properties such as anti-oxidative, anticoagulant, anticancer and reducing the blood glucose (1). In this work, the biomedical potential of fucoidan-based materials as drug delivery system was assessed by processing modified fucoidan (MFu) into particles by photocrosslinking using superamphiphobic surfaces and visible light. Fucoidan was modified by methacrylation reaction using different concentrations of methacrylate anhydride, namely 8% v/v (MFu1) and 12% v/v (MFu2). Further, MFu particles with and without insulin (5% w/v) were produced by pipetting a solution of 5% MFu with triethanolamine and eosin-y onto a superamphiphobic surface and then photocrosslinking using visible light (2). The developed particles were characterized to assess their chemistry, morphology, swelling behavior, drug release, insulin content and encapsulation efficiency. Moreover, the viability assays of fibroblast L929 cells in contact with MFu particles showed good adhesion and proliferation up to 14 days. Furthermore, the therapeutic potential of these particles using human beta cells is currently under investigation. Results obtained so far suggest that modified fucoidan particles could be a good candidate for diabetes mellitus therapeutic approaches.
Resumo:
The weak fixation of biomaterials within the bone structure is one of the major reasons of implants failures. Calcium phosphate (CaP) coatings are used in bone tissue engineering to improve implant osseointegration by enhancing cellular adhesion, proliferation and differentiation, leading to a tight and stable junction between implant and host bone. It has also been observed that materials compatible with bone tissue either have a CaP coating or develop such a calcified surface upon implantation. Thus, the development of bioactive coatings becomes essential for further improvement of integration with the surrounding tissue. However, most of current applied CaP coatings methods (e.g. physical vapor deposition), cannot be applied to complex shapes and porous implants, provide poor structural control over the coating and prevent incorporation of bioactive organic compounds (e.g. antibiotics, growth factors) because of the used harsh processing conditions. Layer-by-layer (LbL) is a versatile technology that permits the building-up of multilayered polyelectrolyte films in mild conditions based on the alternate adsorption of cationic and anionic elements that can integrate bioactive compounds. As it is recognized in natureâ s biomineralization process the presence of an organic template to induce mineral deposition, this work investigate a ion based biomimetic method where all the process is based on LbL methodology made of weak natural-origin polyelectrolytes. A nanostructured multilayer component, with 5 or 10 bilayers, was produced initially using chitosan and chondroitin sulphate polyelectrolyte biopolymers, which possess similarities with the extracellular matrix and good biocompatibility. The multilayers are then rinsed with a sequential passing of solutions containing Ca2+ and PO43- ions. The formation of CaP over the polyelectrolyte multilayers was confirmed by QCM-D, SEM and EDX. The outcomes show that 10 polyelectrolyte bilayer condition behaved as a better site for initiating the formation of CaP as the precipitation occur at earlier stages than in 5 polyelectrolyte bilayers one. This denotes that higher number of bilayers could hold the CaP crystals more efficiently. This work achieved uniform coatings that can be applied to any surface with access to the liquid media in a low-temperature method, which potentiates the manufacture of effective bioactive biomaterials with great potential in orthopedic applications.
Resumo:
Cell Sheets of hASCs (hASCs-CS) have been previously proposed for wound healing applications(1, 2) and despite the concern for production time reduction, the possibility of having these hASCs-CS off-the-shelf is appealing. The goal of this work was to define a cryopreservation methodology allowing to preserve cells viability and the properties CS matrix. hASCs-CS obtained from three different donors were created in UP-cell thermoresponsive dishes(Nunc, Germany) as previously reported(1,2). Different cryopreservation conditions were considered: i)FBS plus DMSO(5% and10%); ii)0.4M of Trehalose plus DMSO (5% and 10%); iii)cryosolution PLL (Akron Biotech, USA); and iv)vitrification. The cryopreservation effect was first assessed for cellular viability by flow cytometry using 7-AAD, and after dissociating the hASCs-CS with collagenase and trypsin-EDTA 0.25%. The expression (RT-PCR) and deposition (western blot and immunocytochemistry) of collagen type I, laminin and fibronectin, and the organization (TEM) of the extracellular matrix was further assessed before and after hASCs-CS cryopreservation to determine a potential effect of the method over matrix composition and integrity. The obtained results confirmed that cell viability is affected by the cryopreservation methodology, as shown before for different CS(3). Interestingly, the matrix properties were not significantly altered and the typical cell sheetâ s easiness of manipulation for transplantation was not lost.
Resumo:
Wharton's jelly stem cells (WJSCs) are a potential source of transplantable stem cells in cartilage-regenerative strategies, due to their highly proliferative and multilineage differentiation capacity. We hypothesized that a non-direct co-culture system with human articular chondrocytes (hACs) could enhance the potential chondrogenic phenotype of hWJSCs during the expansion phase compared to those expanded in monoculture conditions. Primary hWJSCs were cultured in the bottom of a multiwell plate separated by a porous transwell membrane insert seeded with hACs. No statistically significant differences in hWJSCs duplication number were observed under either of the culture conditions during the expansion phase. hWJSCs under co-culture conditions show upregulations of collagen type I and II, COMP, TGFβ1 and aggrecan, as well as of the main cartilage transcription factor, SOX9, when compared to those cultured in the absence of chondrocytes. Chondrogenic differentiation of hWJSCs, previously expanded in co-culture and monoculture conditions, was evaluated for each cellular passage using the micromass culture model. Cells expanded in co-culture showed higher accumulation of glycosaminoglycans (GAGs) compared to cells in monoculture, and immunohistochemistry for localization of collagen type I revealed a strong detection signal when hWJSCs were expanded under monoculture conditions. In contrast, type II collagen was detected when cells were expanded under co-culture conditions, where numerous round-shaped cell clusters were observed. Using a micromass differentiation model, hWJSCs, previously exposed to soluble factors secreted by hACs, were able to express higher levels of chondrogenic genes with deposition of cartilage extracellular matrix components, suggesting their use as an alternative cell source for treating degenerated cartilage.
Resumo:
Cell/cell-extracellular matrix (ECM) dynamic interactions appear to have a major role in regulating communication through soluble signaling, directing cell binding and activating substrates that participate in the highly organized wound healing process. Moreover, these interactions are also crucial for in vitro mimicking cutaneous physiology. Herein we explore cell sheet (CS) engineering to create cellular constructs formed by keratinocytes (hKC), fibroblasts (hDFB) and dermal microvascular endothelial cells (hDMEC), to target skin wound healing but also the in vitro recreation of relevant models. Taking advantage of temperature-responsive culture surfaces, which allow harvesting cultured cells as intact sheets along with the deposited native ECM, varied combinations of homotypic and heterotypic three-dimensional (3-D) CS-based constructs were developed. Constructs combining one CS of keratinocytes as an epidermis-like layer plus a vascularized dermis composed by hDFB and hDMECs were assembled as skin analogues for advancing in vitro testing. Simultaneously both hKC and hDMEC were shown to significantly contribute to the re-epithelialization of full-thickness mice skin wounds by promoting an early epithelial coverage, while hDMEC significantly lead to increased vessels density, incorporating the neovasculature. Thus, although determined by the cellular nature of the constructs, these outcomes demonstrated that CS engineering appear as an unique technology that open the possibility to create numerous combinations of 3D constructs to target defective wound healing as well as the construction of in vitro models to further mimic cutaneous functions crucial for drug screening and cosmetic testing assays.
Resumo:
Tese de Doutoramento em Ciências - Especialidade em Biologia
Resumo:
Tese de Doutoramento em Ciências da Saúde
Resumo:
Staphylococcus epidermidis is a biofilm - forming bacterium and a leading etiological agent of nosocomial infections. The ability to establish biofilms on indwelling medical devices is a key virulence factor for this bacterium. Still, the influence of poly - N - acetyl glucosamine (PNAG), the major component of the extracellular biofilm matrix, in the host immune response has been scarcely studied. Here, t h is influence was assessed in mice challenged i.p. with PNAG - p roducing (WT) and isogenic - mutant lacking PNAG (M10) bacteria grown in biofilm - inducing conditions. Faster bacterial clearance was observed in the mice infected with WT bacteria than in M10 - infected counterparts , which w as accompanied by earlier neutrophil recruitment and higher IL - 6 production. Interestingly, in the WT - infected mice, but not in those infected with M10 , elevated serum IL - 10 was detected . To further study the effe ct of PNAG in the immune response, mice were primed with WT or M10 biofilm bacteria and subsequently infected with WT biofilm - released cells. WT - primed mice presented a higher frequency of splenic IFN - γ + and IL - 17 + CD4 + T cells, and more severe liver patho logy than M10 - primed counterparts. Nevertheless, T reg cells obtained from the WT - primed mice presented a higher suppressive function than those obtained from M10 - primed mice. This effect was abrogated when IL - 10 - deficient mice were similarly primed and infected indicating that PNAG promotes the differentiati on of highly suppressive T reg cells by a mechanism dependent on IL - 10. Altogether, these results provide evidence help ing explain ing the coexistence of inflammation and bacterial persistence often observed in biofilm - originated S. epidermidis infections
Resumo:
In this work five sources of galactomannans, Adenanthera pavonina, Cyamopsis tetragonolobus, Caesalpinia pulcherrima, Ceratonia siliqua and Sophora japonica, presenting mannose/galactose ratios of 1.3, 1.7, 2.9, 3.4 and 5.6, respectively, were used to produce galactomannan-based films. These films were characterized in terms of: water vapour, oxygen and carbon dioxide permeabilities (WVP, O 2 P and CO 2 P); moisture content, water solubility, contact angle, elongation-at-break (EB), tensile strength (TS) and glass transition temperature (T g ). Results showed that films properties vary according to the galactomannan source (different galactose distribution) and their mannose/galactose ratio. Water affinity of mannan and galactose chains and the intermolecular interactions of mannose backbone should also be considered being factors that affect films properties. This work has shown that knowing mannose/galactose ratio of galactomannans is possible to foresee galactomannan-based edible films properties.
Resumo:
Coagulase-negative staphylococci (CoNS) are common bacterial colonisers of the human skin. They are often involved in nosocomial infections due to biofilm formation in indwelling medical devices. While biofilm formation has been extensively studied in Staphylococcus epidermidis, little is known regarding other CoNS species. Here, biofilms from six different CoNS species were characterised in terms of biofilm composition and architecture. Interestingly, the ability to form a thick biofilm was not associated with any particular species, and high variability on biofilm accumulation was found within the same species. Cell viability assays also revealed different proportions of live and dead cells within biofilms formed by different species, although this parameter was particularly similar at the intra-species level. On the other hand, biofilm disruption assays demonstrated important inter- and intra-species differences regarding extracellular matrix composition. Lastly, confocal laser scanning microscopy (CLSM) experiments confirmed this variability, highlighting important differences and common features of CoNS biofilms. We hypothesised that the biofilm formation heterogeneity observed was rather associated with biofilm matrix composition than with cells themselves. Additionally, our results indicate that polysaccharides, DNA and proteins are fundamental pieces in the process of CoNS biofilm formation.