999 resultados para Exponencial stability


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fe-B ultrafine amorphous alloy particles (UFAAP) were prepared by chemical reduction of Fe3+ with NaBHO4 and confirmed to be ultrafine amorphous particles by transmission electron microscopy and X-ray diffraction. The specific heat of the sample was measured by a high precision adiabatic calorimeter, and a differential scanning calorimeter was used for thermal stability analysis. A topological structure of Fe-B atoms is proposed to explain two crystallization peaks and a melting peak observed at T=600, 868 and 1645 K, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variation of specific surface area and chemical reactivity of nano-KH particles treated at different temperatures has been studied, The BET surface area of nano-KH decreases with the increase of heat treatment temperature, while the chemical reactivity per unit surface increases steadily. These results indicate that the state of KH surface is changed after heat treatment. Large specific surface area of nano-KH is a major factor for its high chemical reactivity, nevertheless, the surface in an activated state with high surface energy is also an important factor for its high chemical reactivity. Nano-KH alone can polymerize styrene rapidly with the formation of polystyrene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal and hydrothermal stabilities of HZSM-5 zeolites with crystal sizes less than 100 nm have been studied by multinuclear solid-state NMR, combined with BET and XRD. As evidenced by Al-27 and Si-29 MAS as well as their corresponding cross-polarization/MAS NMR investigations, the thermal stability of nanosized HZSM-5 is not so good as that of microsized HZSM-5. This is due to two processes concerning dealumination and desilicification involved in the calcination of nanosized HZSM-5, while only the dealumination process is conducted in microsized HZSM-5 under the similar calcination process. The hydrothermal stability of nanosized HZSM-5 is, contrary to what was expected, not so bad as that of the microsized HZSM-5 in the course of steam treatment. The actual resistance of the hydrothermal stability to the crystal size of HZSM-5 can be ascribed to an active reconstruction of zeolitic framework through an effective filling of amorphous Si species into nanosized HZSM-5 during hydrothermal treatment. (C) 2001 Published by Elsevier Science B.V.