982 resultados para Evolutionary Optimization
Resumo:
We show that an analysis of the mean and variance of discrete wavelet coefficients of coaveraged time-domain interferograms can be used as a specification for determining when to stop coaveraging. We also show that, if a prediction model built in the wavelet domain is used to determine the composition of unknown samples, a stopping criterion for the coaveraging process can be developed with respect to the uncertainty tolerated in the prediction.
Resumo:
An algorithm for solving nonlinear discrete time optimal control problems with model-reality differences is presented. The technique uses Dynamic Integrated System Optimization and Parameter Estimation (DISOPE), which achieves the correct optimal solution in spite of deficiencies in the mathematical model employed in the optimization procedure. A version of the algorithm with a linear-quadratic model-based problem, implemented in the C+ + programming language, is developed and applied to illustrative simulation examples. An analysis of the optimality and convergence properties of the algorithm is also presented.
Resumo:
The combination of the synthetic minority oversampling technique (SMOTE) and the radial basis function (RBF) classifier is proposed to deal with classification for imbalanced two-class data. In order to enhance the significance of the small and specific region belonging to the positive class in the decision region, the SMOTE is applied to generate synthetic instances for the positive class to balance the training data set. Based on the over-sampled training data, the RBF classifier is constructed by applying the orthogonal forward selection procedure, in which the classifier structure and the parameters of RBF kernels are determined using a particle swarm optimization algorithm based on the criterion of minimizing the leave-one-out misclassification rate. The experimental results on both simulated and real imbalanced data sets are presented to demonstrate the effectiveness of our proposed algorithm.
Resumo:
Background: Serine proteases are major components of viper venom and target various stages of the blood coagulation system in victims and prey. A better understanding of the diversity of serine proteases and other enzymes present in snake venom will help to understand how the complexity of snake venom has evolved and will aid the development of novel therapeutics for treating snake bites. Methodology and Principal Findings: Four serine protease-encoding genes from the venom gland transcriptome of Bitis gabonica rhinoceros were amplified and sequenced. Mass spectrometry suggests the four enzymes corresponding to these genes are present in the venom of B. g. rhinoceros. Two of the enzymes, rhinocerases 2 and 3 have substitutions to two of the serine protease catalytic triad residues and are thus unlikely to be catalytically active, though they may have evolved other toxic functions. The other two enzymes, rhinocerases 4 and 5, have classical serine protease catalytic triad residues and thus are likely to be catalytically active, however they have glycine rather than the more typical aspartic acid at the base of the primary specificity pocket (position 189). Based on a detailed analysis of these sequences we suggest that alternative splicing together with individual amino acid mutations may have been involved in their evolution. Changes within amino acid segments which were previously proposed to undergo accelerated change in venom serine proteases have also been observed. Conclusions and Significance: Our study provides further insight into the diversity of serine protease isoforms present within snake venom and discusses their possible functions and how they may have evolved. These multiple serine protease isoforms with different substrate specificities may enhance the envenomation effects and help the snake to adapt to new habitats and diets. Our findings have potential for helping the future development of improved therapeutics for snake bites.
Resumo:
There have been various techniques published for optimizing the net present value of tenders by use of discounted cash flow theory and linear programming. These approaches to tendering appear to have been largely ignored by the industry. This paper utilises six case studies of tendering practice in order to establish the reasons for this apparent disregard. Tendering is demonstrated to be a market orientated function with many subjective judgements being made regarding a firm's environment. Detailed consideration of 'internal' factors such as cash flow are therefore judged to be unjustified. Systems theory is then drawn upon and applied to the separate processes of estimating and tendering. Estimating is seen as taking place in a relatively sheltered environment and as such operates as a relatively closed system. Tendering, however, takes place in a changing and dynamic environment and as such must operate as a relatively open system. The use of sophisticated methods to optimize the value of tenders is then identified as being dependent upon the assumption of rationality, which is justified in the case of a relatively closed system (i.e. estimating), but not for a relatively open system (i.e. tendering).
Resumo:
Over the past decade genomic approaches have begun to revolutionise the study of animal diversity. In particular, genome sequencing programmes have spread beyond the traditional model species to encompass an increasing diversity of animals from many different phyla, as well as unicellular eukaryotes that are closely related to the animals. Whole genome sequences allow researchers to establish, with reasonable confidence, the full complement of any particular family of genes in a genome. Comparison of gene complements from appropriate genomes can reveal the evolutionary history of gene families, indicating when both gene diversification and gene loss have occurred. More than that, however, assembled genomes allow the genomic environment in which individual genes are found to be analysed and compared between species. This can reveal how gene diversification occurred. Here, we focus on the Fox genes, drawing from multiple animal genomes to develop an evolutionary framework explaining the timing and mechanism of origin of the diversity of animal Fox genes. Ancient linkages between genes are a prominent feature of the Fox genes, depicting a history of gene clusters, some of which may be relevant to understanding Fox gene function.
Resumo:
The diversification of life involved enormous increases in size and complexity. The evolutionary transitions from prokaryotes to unicellular eukaryotes to metazoans were accompanied by major innovations inmetabolicdesign.Hereweshowthat thescalingsofmetabolic rate, population growth rate, and production efficiency with body size have changed across the evolutionary transitions.Metabolic rate scales with body mass superlinearly in prokaryotes, linearly in protists, and sublinearly inmetazoans, so Kleiber’s 3/4 power scaling law does not apply universally across organisms. The scaling ofmaximum population growth rate shifts from positive in prokaryotes to negative in protists and metazoans, and the efficiency of production declines across these groups.Major changes inmetabolic processes duringtheearlyevolutionof life overcameexistingconstraints, exploited new opportunities, and imposed new constraints. The 3.5 billion year history of life on earth was characterized by
Resumo:
In this paper a new system identification algorithm is introduced for Hammerstein systems based on observational input/output data. The nonlinear static function in the Hammerstein system is modelled using a non-uniform rational B-spline (NURB) neural network. The proposed system identification algorithm for this NURB network based Hammerstein system consists of two successive stages. First the shaping parameters in NURB network are estimated using a particle swarm optimization (PSO) procedure. Then the remaining parameters are estimated by the method of the singular value decomposition (SVD). Numerical examples including a model based controller are utilized to demonstrate the efficacy of the proposed approach. The controller consists of computing the inverse of the nonlinear static function approximated by NURB network, followed by a linear pole assignment controller.
Resumo:
Background: Seed storage proteins are a major source of dietary protein, and the content of such proteins determines both the quantity and quality of crop yield. Significantly, examination of the protein content in the seeds of crop plants shows a distinct difference between monocots and dicots. Thus, it is expected that there are different evolutionary patterns in the genes underlying protein synthesis in the seeds of these two groups of plants. Results: Gene duplication, evolutionary rate and positive selection of a major gene family of seed storage proteins (the 11S globulin genes), were compared in dicots and monocots. The results, obtained from five species in each group, show more gene duplications, a higher evolutionary rate and positive selections of this gene family in dicots, which are rich in 11S globulins, but not in the monocots. Conclusion: Our findings provide evidence to support the suggestion that gene duplication and an accelerated evolutionary rate may be associated with higher protein synthesis in dicots as compared to monocots.