986 resultados para Evolutionary Change
Resumo:
Abstract
Resumo:
This paper presents the preliminary findings of pH and colour measurements carried out on artworks on paperand on wood that had been treated with a poly(vinyl acetate) (PVAC) based adhesive in the 1980s. In both cases, areas treated with PVAC proved to be less acidic than untreated areas. Contrary to expectations, the conservation treatments have not, as yet, increased acidity levels in the objects under study. Colour measurements of the works on paper showed that those that had been backed with a cotton fabric using a mixture of methylcellulose and PVAC were less yellow than those from the same print run that had not been backed. This finding suggests that the backing somehow prevented the natural degradation of the support. In view of these preliminary results, further research is clearly needed. This study forms part of a broader ongoing project to assess the role of PVAC in the conservation of a range of cultural assets.
Resumo:
Client change talk (CT) during motivational interviewing and brief motivational interventions (BMIs) have been described as predictors of behavior change, but these links have not been clearly evaluated in research on young people. Within 127 BMIs with 20-year-old men with at-risk alcohol consumption, each CT utterance was categorized and given a strength rating using the Motivational Interviewing Skill Code 2.1. Several ways of categorizing and measuring CT were tested using stepwise regression procedures. Overall CT measures were not significantly related to changes in drinking at 6-month follow-up. Regarding CT sub-dimensions, the frequency of ability/desire/need to change and of ability/desire/need not to change, as well as the average strength of ability/desire/need, predicted significant change in the expected direction. CT length was not significantly linked to outcome. The frequency and strength with which some CT sub-dimensions are expressed during BMI seemed to be important predictors of change in drinking among young men and might thus be especially important for clinicians to notice.
Resumo:
Cartilage-hair hypoplasia (CHH) is a pleiotropic disease caused by recessive mutations in the RMRP gene that result in a wide spectrum of manifestations including short stature, sparse hair, metaphyseal dysplasia, anemia, immune deficiency, and increased incidence of cancer. Molecular diagnosis of CHH has implications for management, prognosis, follow-up, and genetic counseling of affected patients and their families. We report 20 novel mutations in 36 patients with CHH and describe the associated phenotypic spectrum. Given the high mutational heterogeneity (62 mutations reported to date), the high frequency of variations in the region (eight single nucleotide polymorphisms in and around RMRP), and the fact that RMRP is not translated into protein, prediction of mutation pathogenicity is difficult. We addressed this issue by a comparative genomic approach and aligned the genomic sequences of RMRP gene in the entire class of mammals. We found that putative pathogenic mutations are located in highly conserved nucleotides, whereas polymorphisms are located in non-conserved positions. We conclude that the abundance of variations in this small gene is remarkable and at odds with its high conservation through species; it is unclear whether these variations are caused by a high local mutation rate, a failure of repair mechanisms, or a relaxed selective pressure. The marked diversity of mutations in RMRP and the low homozygosity rate in our patient population indicate that CHH is more common than previously estimated, but may go unrecognized because of its variable clinical presentation. Thus, RMRP molecular testing may be indicated in individuals with isolated metaphyseal dysplasia, anemia, or immune dysregulation.
Resumo:
The success of combination antiretroviral therapy is limited by the evolutionary escape dynamics of HIV-1. We used Isotonic Conjunctive Bayesian Networks (I-CBNs), a class of probabilistic graphical models, to describe this process. We employed partial order constraints among viral resistance mutations, which give rise to a limited set of mutational pathways, and we modeled phenotypic drug resistance as monotonically increasing along any escape pathway. Using this model, the individualized genetic barrier (IGB) to each drug is derived as the probability of the virus not acquiring additional mutations that confer resistance. Drug-specific IGBs were combined to obtain the IGB to an entire regimen, which quantifies the virus' genetic potential for developing drug resistance under combination therapy. The IGB was tested as a predictor of therapeutic outcome using between 2,185 and 2,631 treatment change episodes of subtype B infected patients from the Swiss HIV Cohort Study Database, a large observational cohort. Using logistic regression, significant univariate predictors included most of the 18 drugs and single-drug IGBs, the IGB to the entire regimen, the expert rules-based genotypic susceptibility score (GSS), several individual mutations, and the peak viral load before treatment change. In the multivariate analysis, the only genotype-derived variables that remained significantly associated with virological success were GSS and, with 10-fold stronger association, IGB to regimen. When predicting suppression of viral load below 400 cps/ml, IGB outperformed GSS and also improved GSS-containing predictors significantly, but the difference was not significant for suppression below 50 cps/ml. Thus, the IGB to regimen is a novel data-derived predictor of treatment outcome that has potential to improve the interpretation of genotypic drug resistance tests.
Resumo:
Different components of global change can have interacting effects on biodiversity and this may influence our ability to detect the specific consequences of climate change through biodiversity indicators. Here, we analyze whether climate change indicators can be affected by land use dynamics that are not directly determined by climate change. To this aim, we analyzed three community-level indicators of climate change impacts that are based on the optimal thermal environment and averagelatitude of the distribution of bird species present at local communities. We used multiple regression models to relate the variation in climate change indicators to: i) environmental temperature; and ii) three landscape gradients reflecting important current land use change processes (land abandonment, fire impacts and urbanization), all of them having forest areas at their positive extremes. We found that, with few exceptions, landscape gradients determined the figures of climate change indicators as strongly as temperature. Bird communities in forest habitats had colder-dwelling bird species with more northerndistributions than farmland, burnt or urban areas. Our results show that land use changes can reverse, hide or exacerbate our perception of climate change impacts when measured through community-level climate change indicators. We stress the need of an explicit incorporation of the interactions between climate change and land use dynamics to understand what are current climate change indicators indicating and be able to isolate real climate change impacts
Resumo:
George Gaskell and colleagues designed, analysed and interpreted the Eurobarometer 73.1 on the Life Sciences and Biotechnology as part of the research project Sensitive Technologies and European Public Ethics (STEPE), funded by the Science in Society Programme of the EC’s Seventh Framework Programme for Research and Technological Development (FP7).
Resumo:
Visual perception is initiated in the photoreceptor cells of the retina via the phototransduction system.This system has shown marked evolution during mammalian divergence in such complex attributes as activation time and recovery time. We have performed a molecular evolutionary analysis of proteins involved in mammalianphototransduction in order to unravel how the action of natural selection has been distributed throughout thesystem to evolve such traits. We found selective pressures to be non-randomly distributed according to both a simple protein classification scheme and a protein-interaction network representation of the signaling pathway. Proteins which are topologically central in the signaling pathway, such as the G proteins, as well as retinoid cycle chaperones and proteins involved in photoreceptor cell-type determination, were found to be more constrained in their evolution. Proteins peripheral to the pathway, such as ion channels and exchangers, as well as the retinoid cycle enzymes, have experienced a relaxation of selective pressures. Furthermore, signals of positive selection were detected in two genes: the short-wave (blue) opsin (OPN1SW) in hominids and the rod-specific Na+/Ca2+,K+ ion exchanger (SLC24A1) in rodents. The functions of the proteins involved in phototransduction and the topology of the interactions between them have imposed non-random constraints on their evolution. Thus, in shaping or conserving system-level phototransduction traits, natural selection has targeted the underlying proteins in a concerted manner.
Differences in the evolutionary history of disease genes affected by dominant or recessive mutations
Resumo:
Background: Global analyses of human disease genes by computational methods have yielded important advances in the understanding of human diseases. Generally these studies have treated the group of disease genes uniformly, thus ignoring the type of disease-causing mutations (dominant or recessive). In this report we present a comprehensive study of the evolutionary history of autosomal disease genes separated by mode of inheritance.Results: We examine differences in protein and coding sequence conservation between dominant and recessive human disease genes. Our analysis shows that disease genes affected by dominant mutations are more conserved than those affected by recessive mutations. This could be a consequence of the fact that recessive mutations remain hidden from selection while heterozygous. Furthermore, we employ functional annotation analysis and investigations into disease severity to support this hypothesis. Conclusion: This study elucidates important differences between dominantly- and recessively-acting disease genes in terms of protein and DNA sequence conservation, paralogy and essentiality. We propose that the division of disease genes by mode of inheritance will enhance both understanding of the disease process and prediction of candidate disease genes in the future.
Resumo:
Arbuscular mycorrhizal fungi (AMF) are among the most abundant symbionts of plants, improving plant productivity and diversity. They are thought to mostly grow vegetatively, a trait assumed to limit adaptability. However, AMF can also harbor genetically different nuclei (nucleotypes). It has been shown that one AMF can produce genotypically novel offspring with proportions of different nucleotypes. We hypothesized that (1) AMF respond rapidly to a change of environment (plant host) through changes in the frequency of nucleotypes; (2) genotypically novel offspring exhibit different genetic responses to environmental change than the parent; and (3) genotypically novel offspring exhibit a wide range of phenotypic plasticity to a change of environment. We subjected AMF parents and offspring to a host shift. We observed rapid and large genotypic changes in all AMF lines that were not random. Genotypic and phenotypic responses were different among offspring and their parents. Even though growing vegetatively, AMF offspring display a broad range of genotypic and phenotypic changes in response to host shift. We conclude that AMF have the ability to rapidly produce variable progeny, increasing their probability to produce offspring with different fitness than their parents and, consequently, their potential adaptability to new environmental conditions. Such genotypic and phenotypic flexibility could be a fast alternative to sexual reproduction and is likely to be a key to the ecological success of AMF.