991 resultados para Evolution teaching


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, effect of pouring temperature (650 degrees C, 655 degrees C, and 660 degrees C) on semi-solid microstructure evolution of in-situ magnesium silicide (Mg2Si) reinforced aluminum (Al) alloy composite has been studied. The shear force exerted by the cooling slope during gravity driven flow of the melt facilitates the formation of near spherical primary Mg2Si and primary Al grains. Shear driven melt flow along the cooling slope and grain fragmentation have been identified as the responsible mechanisms for refinement of primary Mg2Si and Al grains with improved sphericity. Results show that, while flowing down the cooling slope, morphology of primary Mg2Si and primary Al transformed gradually from coarse dendritic to mixture of near spherical particles, rosettes, and degenerated dendrites. In terms of minimum grain size and maximum sphericity, 650 degrees C has been identified as the ideal pouring temperature for the cooling slope semi-solid processing of present Al alloy composite. Formation of spheroidal grains with homogeneous distribution of reinforcing phase (Mg2Si) improves the isotropic property of the said composite, which is desirable in most of the engineering applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cool cluster cores are in global thermal equilibrium but are locally thermally unstable. We study a non-linear phenomenological model for the evolution of density perturbations in the intracluster medium (ICM) due to local thermal instability and gravity. We have analysed and extended a model for the evolution of an overdense blob in the ICM. We find two regimes in which the overdense blobs can cool to thermally stable low temperatures. One for large t(cool)/t(ff) (t(cool) is the cooling time and t(ff) is the free-fall time), where a large initial overdensity is required for thermal runaway to occur; this is the regime which was previously analysed in detail. We discover a second regime for t(cool)/t(ff) less than or similar to 1 (in agreement with Cartesian simulations of local thermal instability in an external gravitational field), where runaway cooling happens for arbitrarily small amplitudes. Numerical simulations have shown that cold gas condenses out more easily in a spherical geometry. We extend the analysis to include geometrical compression in weakly stratified atmospheres such as the ICM. With a single parameter, analogous to the mixing length, we are able to reproduce the results from numerical simulations; namely, small density perturbations lead to the condensation of extended cold filaments only if t(cool)/t(ff) less than or similar to 10.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasingly, scientific collaborations and contracts cross country borders. The need for assurance that the quality of animal welfare and the caliber of animal research conducted are equivalent among research partners around the globe is of concern to the scientific and laboratory animal medicine communities, the general public, and other key stakeholders. Therefore, global harmonization of animal care and use standards and practices, with the welfare of the animals as a cornerstone, is essential. In the evolving global landscape of enhanced attention to animal welfare, a widely accepted path to achieving this goal is the successful integration of the 3Rs in animal care and use programs. Currently, awareness of the 3Rs, their implementation, and the resulting animal care and use standards and practices vary across countries. This variability has direct effects on the animals used in research and potentially the data generated and may also have secondary effects on the country's ability to be viewed as a global research partner. Here we review the status of implementation of the 3Rs worldwide and focus on 3 countries-Brazil, China and India-with increasing economic influence and an increasing footprint in the biomedical research enterprise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Friction-stir processing (FSP) has been proven as a successful method for the grain refinement of high-strength aluminum alloys. The most important attributes of this process are the fine-grain microstructure and characteristic texture, which impart suitable properties in the as-processed material. In the current work, FSP of the precipitation-hardenable aluminum alloy 2219 has been carried out and the consequent evolution of microstructure and texture has been studied. The as-processed materials were characterized using electron back-scattered diffraction, x-ray diffraction, and electron probe microanalysis. Onion-ring formation was observed in the nugget zone, which has been found to be related to the precipitation response and crystallographic texture of the alloy. Texture development in the alloy has been attributed to the combined effect of shear deformation and dynamic recrystallization. The texture was found heterogeneous even within the nugget zone. A microtexture analysis revealed the dominance of shear texture components, with C component at the top of nugget zone and the B and A(2)* components in the middle and bottom. The bulk texture measurement in the nugget zone revealed a dominant C component. The development of a weaker texture along with the presence of some large particles in the nugget zone indicates particle-stimulated nucleation as the dominant nucleation mechanism during FSP. Grain growth follows the Burke and Turnbull mechanism and geometrical coalescence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of grain refinement in a AZ31 Mg alloy subjected to hot groove rolling is investigated up to large strain (epsilon(t) similar to 2.5). The alloy shows enhanced yield strength without compromising ductility. The change in strain path during rolling has resulted in significant weakening of basal texture. The microstructure analyses show that dynamic recrystallization (DRX) contributed significantly to grain refinement and hence to the observed mechanical properties. The combined effects of DRX and texture evolution on mechanical properties have been addressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Moly-TZM was deformed at constant strain rate of 1.0 s(-1) to investigate the high strain rate deformation behaviour by microstructural and stress response change within a temperature range of 1400-1700 degrees C. To correlate the deformation behaviour with orientational change, recrystallization and recovery of the material, the microstructural investigation was undertaken using scanning electron microscopy (SEM) of electron back scattered diffraction (EBSD). Depending on the grain size and orientation spread recrystallized grains were identified and texture was calculated. Change in grain boundary characteristics with increasing temperature was determined by the misorientation angle distribution for the deformed and recrystallized grains. Subgrain coalescence and increase in subgrain size with increasing temperature was observed, indicating recrystallization not only occurred from the nucleation of the dislocation free grains in grain boundaries but also from the subgrain rotation and merging of the subgrains by annihilation of the low angle grain boundaries. Detailed studies on the evolution of texture of recrystallized grains showed continuous increase in <001> fiber texture in recrystallised grains, in contrast to a mixed fiber <001> +<111> for the deformed grains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three materials, pure aluminium, Al-4 wt.% Mg, alpha-brass have been chosen to understand the evolution of texture and microstructure during rolling. Pure Al develops a strong copper-type rolling texture and the deformation is entirely slip dominated. In Al-4Mg alloy, texture is copper-type throughout the deformation. The advent of Cu-type shear bands in the later stages of deformation has a negligible effect on the final texture. alpha-brass shows a characteristic brass-type texture from the early stages of rolling. Extensive twinning in the intermediate stages of deformation (epsilon(t) similar to 0.5) causes significant texture reorientation towards alpha-fiber. Beyond 40% reduction, deformation is dominated by Bs-type shear bands, and the banding coincides with the evolution of <111>parallel to ND components. The crystallites within the bands preferentially show <110>parallel to ND components. The absence of the Cu component throughout the deformation process indicates that, for the evolution of brass-type texture, the presence of Cu component is not a necessary condition. The final rolling texture is a synergistic effect of deformation twinning and shear banding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the evolution of crystallographic texture in three of the most important high strength aluminium alloys, viz., AA2219, AA7075 and AFNOR7020 in the cold rolled and artificially aged condition. Bulk texture results were obtained by plotting pole figures from X-ray diffraction results followed by Orientation Distribution Function (ODF) analysis and micro-textures were measured using EBSD. The results indicate that the deformation texture components Cu, Bs and S, which were also present in the starting materials, strengthen with increase in amount of deformation. On the other hand, recrystallization texture components Goss and Cube weaken. The Bs component is stronger in the deformation texture. This is attributed to the shear banding. In-service applications indicate that the as-processed AFNOR7020 alloy fails more frequently compared to the other high strength Al alloys used in the aerospace industry. Detailed study of deformation texture revealed that strong Brass (Bs) component could be associated to shear banding, which in turn could explain the frequent failures in AFNOR7020 alloy. The alloying elements in this alloy that could possibly influence the stacking fault energy of the material could be accounted for the strong Bs component in the texture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding technology evolution through periodic landscaping is an important stage of strategic planning in R&D Management. In fields like that of healthcare, where the initial R&D investment is huge and good medical product serve patients better, these activities become crucial. Approximately five percentage of the world population has hearing disabilities. Current hearing aid products meet less than ten percent of the global needs. Patent data and classifications on cochlear implants from 1977-2010, show the landscapes and evolution in the area of such implant. We attempt to highlight emergence and disappearance of patent classes over period of time showing variations in cochlear implant technologies. A network analysis technique is used to explore and capture technology evolution in patent classes showing what emerged or disappeared over time. Dominant classes are identified. The sporadic influence of university research in cochlear implants is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A closed-form expression for the dual of dissipation potential is derived within the framework of irreversible thermodynamics using the principles of dimensional analysis and self-similarity. Through this potential, a damage evolution law is proposed for concrete under fatigue loading using the concepts of damage mechanics in conjunction with fracture mechanics. The proposed law is used to compute damage in a volume element when a member is subjected to fatigue loading. The evolution of damage from microcracking to macrocracking of the entire member is captured through a series of volume elements failing one after the other. The number of loading cycles to failure of the member is obtained as the summation of number of cycles to failure for each individual volume element. A parametric study is conducted to determine the effect of the size of the volume element on the model's prediction of fatigue life. A global damage index is also defined, and the residual moment carrying capacity of damaged beams is evaluated. Through a deterministic sensitivity analysis, it is found that the load range and maximum aggregate size are the most influencing parameters on the fatigue life of a plain concrete beam.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigations on texture evolution and through-thickness texture heterogeneity during equal channel angular pressing (ECAP) of pure magnesium at 200 degrees C, 150 degrees C and room temperature (RT) was carried out by neutron, high energy synchrotron X-ray and electron back-scatter diffraction. Irrespective of the ECAP temperature, a distinctive basal (B) and pyramidal (C-2) II type of fibers forms. The texture differs in the bottom 1 mm portion, where the B-fiber is shifted similar to 55 degrees due to negative shear attributed to friction. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study addresses the evolution of texture and microstructure during annealing in a cryorolled copper. Transition from copper to brass texture during the cryo-rolling has been illustrated. Twinning and interaction between twins and shear bands have been found to play the important role in grain refinement and strengthening. The low temperature vacancy clustering and its effect on the recrystallization have been experimentally demonstrated. Fine scale twinning, and grain refinement have been attributed to the higher yield strength found in the case of samples subjected to cryo-rolling. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental study of plane strain wedge indentation of a model porous brittle solid has been made to understand the effect of indentation parameters on the evolution of the deformation field and the accompanying volume change. A series of high-speed, high-resolution images of the indentation region and simultaneous measurements of load response were captured through the progression of the indentation process. Particle image velocimetry analysis of the images facilitated in situ measurement of the evolution of the resulting plastic zone in terms of incremental material displacement (velocity), strain rate, strain and volume change (e.g., local pore collapse). These measurements revealed initiation and propagation of flow localizations and fractures, as well as enabled estimate of volume changes occurring in the deformation zone. The results were directly compared with theoretical estimates of indentation pressure and deformation zone geometry and were used to validate a modified cavity expansion solution that incorporates effects of volume changes in the plastic zone. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large-scale production of hydrogen gas by water electrolysis is hindered by the sluggish kinetics of oxygen evolution reaction (OER) at the anode. The development of a highly active and stable catalyst for OER is a challenging task. Electrochemically prepared amorphous metal-based catalysts have gained wide attention after the recent discovery of a cnbalt-phosphate (Co-Pi) catalyst: Herein, an amorphous iridium-phosphate (Ir-Pi) is investigated as an oxygen evolution catalyst. The catalyst is prepared by the anodic polarization of carbon paper electrodes in neutral phosphate buffer solutions containing IrCl3. The Ir-Pi film deposited on the substrate has significant amounts of phosphate and It centers in an oxidation state higher than +4. Phosphate plays a significant role in the deposition of the catalyst and also in its activity toward OER. The onset potential of OER on the Ir-Pi is about 150 mV lower in comparison with the Co-Pi under identical experimental conditions. Thus, Ir-Pi is a promising catalyst for electrochemical oxidation of water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many bacterial transcription factors do not behave as per the textbook operon model. We draw on whole genome work, as well as reported diversity across different bacteria, to argue that transcription factors may have evolved from nucleoid-associated proteins. This view would explain a large amount of recent data gleaned from high-throughput sequencing and bioinformatic analyses.