978 resultados para Escherichia coli Infections


Relevância:

100.00% 100.00%

Publicador:

Resumo:

8-Oxoguanine (8-oxoG), induced by reactive oxygen species and arguably one of the most important mutagenic DNA lesions, is prone to further oxidation. Its one-electron oxidation products include potentially mutagenic guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp) because of their mispairing with A or G. All three oxidized base-specific DNA glycosylases of Escherichia coli, namely endonuclease III (Nth), 8-oxoG-DNA glycosylase (MutM) and endonuclease VIII (Nei), excise Gh and Sp, when paired with C or G in DNA, although Nth is less active than the other two. MutM prefers Sp and Gh paired with C (kcat/Km of 0.24–0.26 min–1 nM–1), while Nei prefers G over C as the complementary base (kcat/Km – 0.15–0.17 min–1 nM–1). However, only Nei efficiently excises these paired with A. MutY, a 8-oxoG·A(G)-specific A(G)-DNA glycosylase, is inactive with Gh(Sp)·A/G-containing duplex oligonucleotide, in spite of specific affinity. It inhibits excision of lesions by MutM from the Gh·G or Sp·G pair, but not from Gh·C and Sp·C pairs. In contrast, MutY does not significantly inhibit Nei for any Gh(Sp) base pair. These results suggest a protective function for MutY in preventing mutation as a result of A (G) incorporation opposite Gh(Sp) during DNA replication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Formaldehyde is produced in most living systems and is present in the environment. Evidence that formaldehyde causes cancer in experimental animals infers that it may be a carcinogenic hazard to humans. Formaldehyde reacts with the exocyclic amino group of deoxyguanosine, resulting in the formation of N2-methyl-2′-deoxyguanosine (N2-Me-dG) via reduction of the Schiff base. The same reaction is likely to occur in living cells, because cells contain endogenous reductants such as ascorbic acid and gluthathione. To explore the miscoding properties of formaldehyde-derived DNA adducts a site-specifically modified oligodeoxynucleotide containing a N2-Me-dG was prepared and used as the template in primer extension reactions catalyzed by the Klenow fragment of Escherichia coli DNA polymerase I. The primer extension reaction was slightly stalled one base before the N2-Me-dG lesion, but DNA synthesis past this lesion was readily completed. The fully extended products were analyzed to quantify the miscoding specificities of N2-Me-dG. Preferential incorporation of dCMP, the correct base, opposite the lesion was observed, along with small amounts of misincorporation of dTMP (9.4%). No deletions were detected. Steady-state kinetic studies indicated that the frequency of nucleotide insertion for dTMP was only 1.2 times lower than for dCMP and the frequency of chain extension from the 3′-terminus of a dT:N2-Me-dG pair was only 2.1 times lower than from a dC:N2-Me-dG pair. We conclude that N2-Me-dG is a miscoding lesion capable of generating G→A transition mutations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spectrum of DNA damage caused by reactive oxygen species includes a wide variety of modifications of purine and pyrimidine bases. Among these modified bases, 7,8-dihydro-8-oxoguanine (8-oxoG) is an important mutagenic lesion. Base excision repair is a critical mechanism for preventing mutations by removing the oxidative lesion from the DNA. That the spontaneous mutation frequency of the Escherichia coli mutT mutant is much higher than that of the mutM or mutY mutant indicates a significant potential for mutation due to 8-oxoG incorporation opposite A and G during DNA replication. In fact, the removal of A and G in such a situation by MutY protein would fix rather than prevent mutation. This suggests the need for differential removal of 8-oxoG when incorporated into DNA, versus being generated in situ. In this study we demonstrate that E.coli Nth protein (endonuclease III) has an 8-oxoG DNA glycosylase/AP lyase activity which removes 8-oxoG preferentially from 8-oxoG/G mispairs. The MutM and Nei proteins are also capable of removing 8-oxoG from mispairs. The frequency of spontaneous G:C→C:G transversions was significantly increased in E.coli CC103mutMnthnei mutants compared with wild-type, mutM, nth, nei, mutMnei, mutMnth and nthnei strains. From these results it is concluded that Nth protein, together with the MutM and Nei proteins, is involved in the repair of 8-oxoG when it is incorporated opposite G. Furthermore, we found that human hNTH1 protein, a homolog of E.coli Nth protein, has similar DNA glycosylase/AP lyase activity that removes 8-oxoG from 8-oxoG/G mispairs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alternative reproductive cycles make use of different strategies to generate different reproductive products. In Escherichia coli, recA and several other rec genes are required for the generation of recombinant genomes during Hfr conjugation. During normal asexual reproduction, many of these same genes are needed to generate clonal products from UV-irradiated cells. However, unlike conjugation, this latter process also requires the function of the nucleotide excision repair genes. Following UV irradiation, the recovery of DNA replication requires uvrA and uvrC, as well as recA, recF, and recR. The rec genes appear to be required to protect and maintain replication forks that are arrested at DNA lesions, based on the extensive degradation of the nascent DNA that occurs in their absence. The products of the recJ and recQ genes process the blocked replication forks before the resumption of replication and may affect the fidelity of the recovery process. We discuss a model in which several rec gene products process replication forks arrested by DNA damage to facilitate the repair of the blocking DNA lesions by nucleotide excision repair, thereby allowing processive replication to resume with no need for strand exchanges or recombination. The poor survival of cellular populations that depend on recombinational pathways (compared with that in their excision repair proficient counterparts) suggests that at least some of the rec genes may be designed to function together with nucleotide excision repair in a common and predominant pathway by which cells faithfully recover replication and survive following UV-induced DNA damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA polymerase V, composed of a heterotrimer of the DNA damage-inducible UmuC and UmuD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{^{\prime}}}}\end{equation*}\end{document} proteins, working in conjunction with RecA, single-stranded DNA (ssDNA)-binding protein (SSB), β sliding clamp, and γ clamp loading complex, are responsible for most SOS lesion-targeted mutations in Escherichia coli, by catalyzing translesion synthesis (TLS). DNA polymerase II, the product of the damage-inducible polB (dinA ) gene plays a pivotal role in replication-restart, a process that bypasses DNA damage in an error-free manner. Replication-restart takes place almost immediately after the DNA is damaged (≈2 min post-UV irradiation), whereas TLS occurs after pol V is induced ≈50 min later. We discuss recent data for pol V-catalyzed TLS and pol II-catalyzed replication-restart. Specific roles during TLS for pol V and each of its accessory factors have been recently determined. Although the precise molecular mechanism of pol II-dependent replication-restart remains to be elucidated, it has recently been shown to operate in conjunction with RecFOR and PriA proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A covalently linked protein–protein conjugate between ThiF and ThiS thiocarboxylate was found in a partially purified coexpressed ThiF/ThiS protein mixture by using Fourier transform mass spectrometry. The Cys-184 of ThiF and the C terminus of ThiS thiocarboxylate were identified to be involved in the formation of this complex by using both mutagenesis and chemical modification methods. A complementation study of Escherichia coli thiF− using thiF(C184S) suggests that this conjugate is an essential intermediate involved in the biosynthesis of the thiazole moiety of thiamin. This ThiF/ThiS conjugate is the first characterized example of a unique acyldisulfide intermediate in a biosynthetic system. This protein conjugate is also an example of an ubiquitin-E1 like protein–protein conjugate in prokaryotes and supports a strong evolutionary link between thiamin biosynthesis and the ubiquitin conjugating system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Subunit rotation within the F1 catalytic sector of the ATP synthase has been well documented, identifying the synthase as the smallest known rotary motor. In the membrane-embedded FO sector, it is thought that proton transport occurs at a rotor/stator interface between the oligomeric ring of c subunits (rotor) and the single-copy a subunit (stator). Here we report evidence for an energy-dependent rotation at this interface. FOF1 was expressed with a pair of substituted cysteines positioned to allow an intersubunit disulfide crosslink between subunit a and a c subunit [aN214C/cM65C; Jiang, W. & Fillingame, R. H. (1998) Proc. Natl. Acad. Sci. USA 95, 6607–6612]. Membranes were treated with N,N′-dicyclohexyl-[14C]carbodiimide to radiolabel the D61 residue on less than 20% of the c subunits. After oxidation to form an a–c crosslink, the c subunit properly aligned to crosslink to subunit a was found to contain very little 14C label relative to other members of the c ring. However, exposure to MgATP before oxidation significantly increased the radiolabel in the a–c crosslink, indicating that a different c subunit was now aligned with subunit a. This increase was not induced by exposure to MgADP/Pi. Furthermore, preincubation with MgADP and azide to inhibit F1 or with high concentrations of N,N′-dicyclohexylcarbodiimide to label most c subunits prevented the ATP effect. These results provide evidence for an energy-dependent rotation of the c ring relative to subunit a.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the functional role of the ribosomal tRNA exit (E) site, two different models have been proposed. It has been suggested that transient E-site binding of the tRNA leaving the peptidyl (P) site promotes elongation factor G (EF-G)-dependent translocation by lowering the energetic barrier of tRNA release [Lill, R., Robertson, J. M. & Wintermeyer, W. (1989) EMBO J. 8, 3933-3938]. The alternative "allosteric three-site model" [Nierhaus, K.H. (1990) Biochemistry 29, 4997-5008] features stable, codon-dependent tRNA binding to the E site and postulates a coupling between E and aminoacyl (A) sites that regulates the tRNA binding affinity of the two sites in an anticooperative manner. Extending our testing of the two conflicting models, we have performed translocation experiments with fully active ribosomes programmed with heteropolymeric mRNA. The results confirm that the deacylated tRNA released from the P site is bound to the E site in a kinetically labile fashion, and that the affinity of binding, i.e., the occupancy of the E site, is increased by Mg2+ or polyamines. At conditions of high E-site occupancy in the posttranslocation complex, filling the A site with aminoacyl-tRNA had no influence on the E site, i.e., there was no detectable anticooperative coupling between the two sites, provided that second-round translocation was avoided by removing EF-G. On the basis of these results, which are entirely consistent with our previous results, we consider the allosteric three-site model of elongation untenable. Rather, as proposed earlier, the E site-bound state of the leaving tRNA is a transient intermediate and, as such, is a mechanistic feature of the classic two-state model of the elongating ribosome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insertion of introns into cloned cDNA of two isolates of the plant potyvirus pea seedborne mosaic virus facilitated plasmid amplification in Escherichia coli. Multiple stop codons in the inserted introns interrupted the open reading frame of the virus cDNA, thereby terminating undesired translation of virus proteins in E. coli. Plasmids containing the full-length virus sequences, placed under control of the cauliflower mosaic virus 35S promoter and the nopaline synthase termination signal, were stable and easy to amplify in E. coli if one or more introns were inserted into the virus sequence. These plasmids were infectious when inoculated mechanically onto Pisum sativum leaves. Examination of the cDNA-derived viruses confirmed that intron splicing of in vivo transcribed pre-mRNA had occurred as predicted, reestablishing the virus genome sequences. Symptom development and virus accumulation of the cDNA derived viruses and parental viruses were identical. It is proposed that intron insertion can be used to facilitate manipulation and amplification of cloned DNA fragments that are unstable in, or toxic to, E. coli. When transcribed in vivo in eukaryotic cells, the introns will be eliminated from the sequence and will not interfere with further analysis of protein expression or virus infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We had earlier identified the pcnB locus as the gene for the major Escherichia coli poly(A) polymerase (PAP I). In this report, we describe the disruption and identification of a candidate gene for a second poly(A) polymerase (PAP II) by an experimental strategy which was based on the assumption that the viability of E. coli depends on the presence of either PAP I or PAP II. The coding region thus identified is the open reading frame f310, located at about 87 min on the E. coli chromosome. The following lines of evidence support f310 as the gene for PAP II: (i) the deduced peptide encoded by f310 has a molecular weight of 36,300, similar to the molecular weight of 35,000 estimated by gel filtration of PAP II; (ii) the deduced f310 product is a relatively hydrophobic polypeptide with a pI of 9.4, consistent with the properties of partially purified PAP II; (iii) overexpression of f310 leads to the formation of inclusion bodies whose solubilization and renaturation yields poly(A) polymerase activity that corresponds to a 35-kDa protein as shown by enzyme blotting; and (iv) expression of a f310 fusion construct with hexahistidine at the N-terminus of the coding region allowed purification of a poly(A) polymerase fraction whose major component is a 36-kDa protein. E. coli PAP II has no significant sequence homology either to PAP I or to the viral and eukaryotic poly(A) polymerases, suggesting that the bacterial poly(A) polymerases have evolved independently. An interesting feature of the PAP II sequence is the presence of sets of two paired cysteine and histidine residues that resemble the RNA binding motifs seen in some other proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MscL is a channel that opens a large pore in the Escherichia coli cytoplasmic membrane in response to mechanical stress. Previously, we highly enriched the MscL protein by using patch clamp as a functional assay and cloned the corresponding gene. The predicted protein contains a largely hydrophobic core spanning two-thirds of the molecule and a more hydrophilic carboxyl terminal tail. Because MscL had no homology to characterized proteins, it was impossible to predict functional regions of the protein by simple inspection. Here, by mutagenesis, we have searched for functionally important regions of this molecule. We show that a short deletion from the amino terminus (3 amino acids), and a larger deletion of 27 amino acids from the carboxyl terminus of this protein, had little if any effect in channel properties. We have thus narrowed the search of the core mechanosensitive mechanism to 106 residues of this 136-amino acid protein. In contrast, single residue substitutions of a lysine in the putative first transmembrane domain or a glutamine in the periplasmic loop caused pronounced shifts in the mechano-sensitivity curves and/or large changes in the kinetics of channel gating, suggesting that the conformational structure in these regions is critical for normal mechanosensitive channel gating.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One gene locus on chromosome I in Saccharomyces cerevisiae encodes a protein (YAB5_YEAST; accession no. P31378) with local sequence similarity to the DNA repair glycosylase endonuclease III from Escherichia coli. We have analyzed the function of this gene, now assigned NTG1 (endonuclease three-like glycosylase 1), by cloning, mutant analysis, and gene expression in E. coli. Targeted gene disruption of NTG1 produces a mutant that is sensitive to H2O2 and menadione, indicating that NTG1 is required for repair of oxidative DNA damage in vivo. Northern blot analysis and expression studies of a NTG1-lacZ gene fusion showed that NTG1 is induced by cell exposure to different DNA damaging agents, particularly menadione, and hence belongs to the DNA damage-inducible regulon in S. cerevisiae. When expressed in E. coli, the NTG1 gene product cleaves plasmid DNA damaged by osmium tetroxide, thus, indicating specificity for thymine glycols in DNA similarly as is the case for EndoIII. However, NTG1 also releases formamidopyrimidines from DNA with high efficiency and, hence, represents a glycosylase with a novel range of substrate recognition. Sequences similar to NTG1 from other eukaryotes, including Caenorhabditis elegans, Schizosaccharomyces pombe, and mammals, have recently been entered in the GenBank suggesting the universal presence of NTG1-like genes in higher organisms. S. cerevisiae NTG1 does not have the [4Fe-4S] cluster DNA binding domain characteristic of the other members of this family.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The avian pathogenic Escherichia coli strain (chi)7122 (serotype O78:K80:H9) causes airsacculitis and colisepticemia in chickens. To identify genes associated with avian disease, a genomic subtraction technique was performed between strain (chi)7122 and the E. coli K-12 strain (chi)289. The DNA isolated using this method was found only in strain (chi)7122 and was used to identify cosmid clones carrying unique DNA from a library of (chi)7122 that were then used to map the position of unique DNA on the E. coli chromosome. A total of 12 unique regions were found, 5 of which correspond to previously identified positions for unique DNA sequence in E. coli strains. To assess the role each unique region plays in virulence, mutants of (chi)7122 were constructed in which a segment of unique DNA was replaced with E. coli K-12 DNA by cotransduction of linked transposon insertions in DNA flanking the unique sequence. The resulting replacement mutants were assessed for inability to colonize the air sac and cause septicemia in 2-week-old white Leghorn chickens. Two mutants were found to be avirulent when injected into the right caudal air sac of 2-week-old chickens. One avirulent mutant, designated (chi)7145, carries a replacement of the rfb locus at 44 min, generating a rough phenotype. The second mutant is designated (chi)7146, and carries a replacement at position 0.0 min on the genetic map. Both mutants could be complemented to partial virulence by cosmids carrying sequences unique to (chi)7122.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactive oxygen species are common causes of cellular damages in all aerobic organisms. In Escherichia coli, the oxyR gene product is a positive regulator of the oxyR regulon that is induced in response to H2O2 stress. To identify genes involved in counteracting oxidative stress in plants, we transformed a delta oxyR mutant of E. coli with an Arabidopsis thaliana cDNA library and selected for clones that restored the ability of the delta oxyR mutant to grow in the presence of H2O2. Using this approach, we isolated a cDNA that has strong homology with the annexin super-gene family. The complemented mutant showed higher catalase activity. mRNA expression of the annexin gene in A. thaliana was higher in roots as compared with other organs and was also increased when the plants were exposed to H2O2 stress or salicylic acid. Based on the results presented in this study, we propose a novel physiological role for annexin in counteracting H2O2 stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To examine the coupling of ATP hydrolysis to helicase translocation along DNA, we have purified and characterized complexes of the Escherichia coli Rep protein, a dimeric DNA helicase, covalently crosslinked to a single-stranded hexadecameric oligodeoxynucleotide (S). Crosslinked Rep monomers (PS) as well as singly ligated (P2S) and doubly ligated (P2S2) Rep dimers were characterized. The equilibrium and kinetic constants for Rep dimerization as well as the steady-state ATPase activities of both PS and P2S crosslinked complexes were identical to the values determined for un-crosslinked Rep complexes formed with dT16. Therefore, ATP hydrolysis by both PS and P2S complexes are not coupled to DNA dissociation. This also rules out a strictly unidirectional sliding mechanism for ATP-driven translocation along single-stranded DNA by either PS or the P2S dimer. However, ATP hydrolysis by the doubly ligated P2S2 Rep dimer is coupled to single-stranded DNA dissociation from one subunit of the dimer, although loosely (low efficiency). These results suggest that ATP hydrolysis can drive translocation of the dimeric Rep helicase along DNA by a "rolling" mechanism where the two DNA binding sites of the dimer alternately bind and release DNA. Such a mechanism is biologically important when one subunit binds duplex DNA, followed by subsequent unwinding.