990 resultados para Erythrocyte Perfused Rat Kidney
Resumo:
The concentrations of the general neuronal markers D2-protein (N-CAM), D3-protein and neuron specific enolase (NSE) in reaggregating cultures of fetal rat telencephalon cells were affected by the presence of 30 nM triiodothyronine in the defined culture medium. The extent of normal developmental changes were enhanced by triiodothyronine, as demonstrated by crossed immunoelectrophoresis. From 13 to 19 days in culture, the concentration of D2-protein decreased, and the concentrations of both D3-protein and NSE increased. Nerve growth factor (NGF) was without effect on the development of these general neuronal markers. However, as shown previously both triiodothyronine and NGF increased the activity of choline acetyltransferase, a marker for cholinergic neurons. The results suggest an enhanced overall differentiation of several types of telencephalon neurons in the presence of triiodothyronine, and a specific stimulation of cholinergic telencephalon neurons by NGF.
Resumo:
Metabolic acidosis is a prevalent complication in moderate and late stages of chronic kidney disease (CKD). It is established that the correction of metabolic acidosis may improve metabolic bone disorders and protein degradation in the skeletal muscle, two characteristic complications of patients with advanced CKD. In the last 18 months, three randomized controlled trials have drawn the attention on a novel indication to correct metabolic acidosis in these patients, i.e., halting CKD progression. These data show that sodium bicarbonate, a cheap and easily manageable treatment, may delay the progression of CKD and the need of a renal replacement therapy such as dialysis or kidney transplantation.
Resumo:
Recent studies at high magnetic fields using the phase of gradient-echo MR images have shown the ability to unveil cortical substructure in the human brain. To investigate the contrast mechanisms in phase imaging, this study extends, for the first time, phase imaging to the rodent brain. Using a 14.1 T horizontal bore animal MRI scanner for in vivo micro-imaging, images with an in-plane resolution of 33 microm were acquired. Phase images revealed, often more clearly than the corresponding magnitude images, hippocampal fields, cortical layers (e.g. layer 4), cerebellar layers (molecular and granule cell layers) and small white matter structures present in the striatum and septal nucleus. The contrast of the phase images depended in part on the orientation of anatomical structures relative to the magnetic field, consistent with bulk susceptibility variations between tissues. This was found not only for vessels, but also for white matter structures, such as the anterior commissure, and cortical layers in the cerebellum. Such susceptibility changes could result from variable blood volume. However, when the deoxyhemoglobin content was reduced by increasing cerebral blood flow (CBF) with a carbogen breathing challenge, contrast between white and gray matter and cortical layers was not affected, suggesting that tissue cerebral blood volume (and therefore deoxyhemoglobin) is not a major source of the tissue phase contrast. We conclude that phase variations in gradient-echo images are likely due to susceptibility shifts of non-vascular origin.
Resumo:
Tissue-specific expression studies of Glutaryl-CoA dehydrogenase (Gcdh) in adult rats revealed expression in the whole rat brain, almost exclusively in neurons, and surprisingly high expression in the juxtamedullar cortex of the kidney. The organic anion transporter 1 (OAT1) mediates basolateral uptake of glutarate derivatives from proximal tubule cells and contributes to their renal clearance. In brain, OAT1 is expressed at the choroid plexus, in neurons of cortex and hippocampus. We hypothesized that Gcdh and Oat1 are co-expressed in the same cells in kidney and brain and analyzed their mRNA expression by in situ hybridization on cryosections of adult rat brain, kidney and liver. In brain, Gcdh and Oat1 were found co-expressed in most neurons. Only the Purkinje neurons of the cerebellum were found to be Oat1 negative. In the kidney Gcdh and Oat1 are widely co-expressed with a specific high expression in proximal tubule cells. In conclusion there seems to be a functional coupling of Gcdh and Oat1 on a renal and neuronal level. Further studies are ongoing to confirm these findings in human tissues.
Resumo:
The intravenous, short-acting general anesthetic propofol was applied to three-dimensional (aggregating) cell cultures of fetal rat telencephalon. Both the clinically used formulation (Disoprivan, ICI Pharmaceuticals, Cheshire, England) and the pure form (2,6-diisopropylphenol) were tested at two different periods of brain development: immature brain cell cultures prior to synaptogenesis and at the time of intense synapses and myelin formation. At both time periods and for clinically relevant concentrations and time of exposure (i.e., concentrations > or = 2.0 micrograms/ml for 8 hr), propofol caused a significant decrease of glutamic acid decarboxylase activity. This effect persisted after removal of the drug, suggesting irreversible structural changes in GABAergic neurons. The gamma-aminobutyric acid type A (GABAA) blocking agents bicuculline and picrotoxin partially attenuated the neurotoxic effect of propofol in cultures treated at the more mature phase of development. This protective effect was not observed in the immature brain cells. The present data suggest that propofol may cause irreversible lesions to GABAergic neurons when given at a critical phase of brain development. In contrast, glial cells and myelin appeared resistant even to high doses of propofol.
Resumo:
Barbiturates are regularly used as an anesthetic for animal experimentation and clinical procedures and are frequently provided with solubilizing compounds, such as ethanol and propylene glycol, which have been reported to affect brain function and, in the case of (1)H NMR experiments, originate undesired resonances in spectra affecting the quantification. As an alternative, thiopental can be administrated without any solubilizing agents. The aim of the study was to investigate the effect of deep thiopental anesthesia on the neurochemical profile consisting of 19 metabolites and on glucose transport kinetics in vivo in rat cortex compared with alpha-chloralose using localized (1)H NMR spectroscopy. Thiopental was devoid of effects on the neurochemical profile, except for the elevated glucose at a given plasma glucose level resulting from thiopental-induced depression of glucose consumption at isoelectrical condition. Over the entire range of plasma glucose levels, steady-state glucose concentrations were increased on average by 48% +/- 8%, implying that an effect of deep thiopental anesthesia on the transport rate relative to cerebral glucose consumption ratio was increased by 47% +/- 8% compared with light alpha-chloralose-anesthetized rats. We conclude that the thiopental-induced isoelectrical condition in rat cortex significantly affected glucose contents by depressing brain metabolism, which remained substantial at isoelectricity.
Resumo:
The thermal energetics of rodents from cool, wet tropical highlands are poorly known. Metabolic rate, body temperature and thermal conductance were measured in the moss-forest rat, Rattus niobe (Rodentia), a small murid endemic to the highlands of New Guinea. These data were evaluated in the context of the variation observed in the genus Rattus and among tropical murids. In 7 adult R. niobe, basal metabolic rate (BMR) averaged 53.6±6.6mLO2h(-1), or 103% of the value predicted for a body mass of 42.3±5.8g. Compared to other species of Rattus, R. niobe combines a low body temperature (35.5±0.6°C) and a moderately low minimal wet thermal conductance cmin (5.88±0.7mLO2h(-1)°C(-1), 95% of predicted) with a small size, all of which lead to reduced energy expenditure in a constantly cool environment. The correlations of mean annual rainfall and temperature, altitude and body mass with BMR, body temperature and cmin were analyzed comparatively among tropical Muridae. Neither BMR, nor cmin or body temperature correlated with ambient temperature or altitude. Some of the factors which promote high BMR in higher latitude habitats, such as seasonal exposure to very low temperature and short reproductive season, are lacking in wet montane tropical forests. BMR increased with rainfall, confirming a pattern observed among other assemblages of mammals. This correlation was due to the low BMR of several desert adapted murids, while R. niobe and other species from wet habitats had a moderate BMR.
Resumo:
PURPOSE: To compare the effect of a rat anti-VEGF antibody, administered either by topical or subconjunctival (SC) routes, on a rat model of corneal transplant rejection.METHODS: Twenty-four rats underwent corneal transplantation and were randomized into four treatment groups (n=6 in each group). G1 and G2 received six SC injections (0.02 ml 10 µg/ml) of denatured (G1) or active (G2) anti-VEGF from Day 0 to Day 21 every third day. G3 and G4 were instilled three times a day with denatured (G3) or active (G4) anti-VEGF drops (10 µg/ml) from Day 0 to Day 21. Corneal mean clinical scores (MCSs) of edema (E), transparency (T), and neovessels (nv) were recorded at Days 3, 9, 15, and 21. Quantification of neovessels was performed after lectin staining of vessels on flat mounted corneas.RESULTS: Twenty-one days after surgery, MCSs differed significantly between G1 and G2, but not between G3 and G4, and the rejection rate was significantly reduced in rats receiving active antibodies regardless of the route of administration (G2=50%, G4=66.65% versus G1 and G3=100%; p<0.05). The mean surfaces of neovessels were significantly reduced in groups treated with active anti-VEGF (G2, G4). However, anti-VEGF therapy did not completely suppress corneal neovessels.CONCLUSIONS: Specific rat anti-VEGF antibodies significantly reduced neovascularization and subsequent corneal graft rejection. The SC administration of the anti-VEGF antibody was more effective than topical instillation.
Resumo:
Background and objectives Interleukin 18 (IL-18) is a pleiotropic cytokine involved in rheumatoid arthritis (RA) pathogenesis. This study was carried out to evaluate the effi cacy of IL-18 binding protein (IL-18BP) gene therapy in the rat adjuvant- induced arthritis (AIA) model and to decipher the mechanisms by which IL-18BP delivery lessens bone destruction.Materials and methods Arthritis was induced in female Lewis rat by Mycobacterium butyricum and the mRNA expression of IL-18 and IL-18BP was determined in the joints. In a preventive study, rats were divided into an adenovirus producing IL-18BP-Fc (AdmIL-18BP-Fc) group (n=8) and an adenovirus producing green fl uorescent protein (AdGFP) group (n=7). On day 8 after AIA induction, adenoviruses were injected. Clinical parameters were assessed. At day 18, during maximal arthritis, the rats were euthanized, ankles were collected and x-rays were performed. mRNA and protein were extracted from joints for analysis by quantitative reverse transcriptase-PCR, multiplex, Western blot and zymography.Results The authors observed a decrease in the (IL-18BP/ IL-18) ratio from day 7 to 45. Administration of AdmIL-18BPd-Fc decreased clinical parameters and prevented bone and joint destruction compared to AdGFP administration. IL-18BP delivery reduced the (receptor activator of nuclear factor κB ligand (RANKL)/osteoprotegerin (OPG)) ratio by 70%, the matrix metalloproteinase 9 (MMP9) level by 33% and the tartrate-resistant acid phosphatase (TRAP) level by 44% in the joint homogenates from AdmIL-18BPd-Fc compared to AdGFP treated rats.Conclusions In rat AIA, a decrease in the (IL-18BP/IL-18) ratio was observed. IL-18BP delivery prevented joint and bone destruction by downregulating MMP9, (RANKL/OPG) and TRAP, suggesting a potential benefi t of a similar therapy in RA.Abstract topics Towards novel therapeutic strategies.
Resumo:
PURPOSE: This study aimed to highlight structural corneal changes in a model of type 2 diabetes, using in vivo corneal confocal microscopy (CCM). The abnormalities were also characterized by transmission electron microscopy (TEM) and second harmonic generation (SHG) microscopy in rat and human corneas. METHODS: Goto-Kakizaki (GK) rats were observed at age 12 weeks (n = 3) and 1 year (n = 6), and compared to age-matched controls. After in vivo CCM examination, TEM and SHG microscopy were used to characterize the ultrastructure and the three-dimensional organization of the abnormalities. Human corneas from diabetic (n = 3) and nondiabetic (n = 3) patients were also included in the study. RESULTS: In the basal epithelium of GK rats, CCM revealed focal hyper-reflective areas, and histology showed proliferative cells with irregular basement membrane. In the anterior stroma, extracellular matrix modifications were detected by CCM and confirmed in histology. In the Descemet's membrane periphery of all the diabetic corneas, hyper-reflective deposits were highlighted using CCM and characterized as long-spacing collagen fibrils by TEM. SHG microscopy revealed these deposits with high contrast, allowing specific detection in diabetic human and rat corneas without preparation and characterization of their three-dimensional organization. CONCLUSION: Pathologic findings were observed early in the development of diabetes in GK rats. Similar abnormalities have been found in corneas from diabetic patients. TRANSLATIONAL RELEVANCE: This multidisciplinary study highlights diabetes-induced corneal abnormalities in an animal model, but also in diabetic donors. This could constitute a potential early marker for diagnosis of hyperglycemia-induced tissue changes.
Resumo:
Objective Evaluating the effect of preconditioning with simvastatin in acute kidney injury induced by sepsis. Method Male adult Wistar rats were divided into the following groups: SHAM (control); SHAM+Statin (0.5 mg/kg simvastatin, orally); Sepsis (cecal puncture ligation – CPL); Sepsis+Statin. Physiological parameters, peritoneal fluid culture, renal function, oxidative metabolites, severity of acute kidney injury and animal survival were evaluated. Results The treatment with simvastatin in induced sepsis showed elevation of creatinine clearance with attenuation of generation of oxidative metabolites, lower severity of acute kidney injury and reduced mortality. Conclusion This investigation confirmed the renoprotection with antioxidant principle of the simvastatin in acute kidney injury induced by sepsis in an experimental model.
Resumo:
The aim of this IRB-approved study was to prospectively analyze psychological transformations in ESRD patients before and after transplantation (KT). Semi-structured interviews were conducted in 30 patients (mean age = 53±10) after their inclusion on the waiting-list (Gr. A). Follow-up interviews were performed 6 months later in 15 patients still awaiting KT (Gr. B6), and in 15 patients 6 months (Gr. C6) and 12 months (Gr. C12) after KT. Qualitative analysis was performed. Gr: A:All patients underlined loss of freedom, 87% devoted much energy to maintain normality, 57% modified medical directives. All reported emotional fragility related to dialysis and loss of quality of life (QOL), negative (43%) or suicidal thoughts (20%). Professional stigma was underlined (26%). Gr: B6:40% reported no change, 60% mentioned increase of illness intrusiveness, 46% dialysis side-effects, 40% communication problems, 33% tension with medical staff and waiting list handling. Fear of emotional breakdown (40%), couple problems (47%) and worsened professional difficulties (20%) were reported. Gr: C6:All patients mentioned improved QOL and freedom recovery (87%). All expressed concerns about possible acute rejection, 73% were anxious about laboratory results, 93% experienced dependence to immunosuppressants, 47% reported difficulties in handling medication, 21% feared to forget them, 47% were concerned about side-effects, 67% had resumed work but medical constraints led to professional tension (40%). Gr: C12:All mentioned recovered QOL. Medical controls were accepted as a routine (87%) and adherence to medication was mandatory (100%). All mentioned the limited long-term graft survival and 47% were anxious about possible return to dialysis, especially younger patients (27%). Positive identity and existential changes were reported (60%). This prospective qualitative study identifies psychological modifications in the course of KT. It provides a basis to adequately address concerns, but it shows also that KT is clearly associated with positive psychological transformations.