991 resultados para Environmental Chemicals
Resumo:
In this study, which has been done in Hormoz larve Hatchery at Kohestak in Minab at 1385, the efficiency of Ergosen and Vibromax vaccine and the effect of them on growth factors such as total length, Carapase, dry weight and the number of upper mordents of rostrum and survival of the stages of larvae and post larvae of Indian white shrimp was studied. Thus in order to comparison the effects of Vibromax and Ergosen, each of them separately, in one treatment, and in another simultaneously with one control treatment was used. Vaccination against larvae shrimps was done through Artemia. This study used four treatments with three replicates in a completely randomized design and comparison of means was done through Duncan test. Breeding larvae and post larvae of Indian white shrimp from zoa I stage to PL 15 was done in 20 litter plastic buckets. Present results indicated that the highest amount of growth and survival factors in larvae stage (from zoa to PL1), and also in stages of PL5 and PL15, in the treatment of Ergoson effect + vaccine and it was with a little difference from that treatment of Ergoson effect which was in high significance difference in regard to control treatment at α<0.01 level and treatment of vaccine effect and control treatment at α<0.01 level often have no significant difference. This research used environmental stress tests to study the quality of post larvae under experiment. Studying in this field showed that feeding vaccine to larvae of Indian shrimps which was done through Artemia nauplii enrichment ,and ergosen , in treatment of ergosen vaccine lead to more resistance of post larvaes against salinity stress tests and formalin .This case was observed in every three stages ,so that in stress formalin test 100 parts per million and also 10 and 20 salinity parts in thousands the most survival was observed in treatment of Ergosan effect+vaccine and after that in treatment of Ergoson effect and with a little difference in treatment of vaccine effect. Of course this case, in treatment of Ergoson effect + vaccine due to the synergistic properties vaccine with Ergoson was more than to other treatments, while every three treatments, in most stages had significant difference toward control treatment at α<0.01 level and the control treatment because of not having Ergoson and nauplii artemia with vaccine, having the least survival rate in this stages.
Resumo:
Fish protein concentrate (FPC) is a healthy, sustainable and high nutritive product which sanitized produced from fishes in which, protein and other nutrients are more concentrated than in fresh fishes. The aim of this research is to study on the sustainability of FPC produced from Kilka (Clupeonella engrauliformis , C. grimmi and C. cultriventris) in two Vaccum Packaging and Modified Atmosphere Packaging at different environmental factors during six months. In our study the analysis of FPC protein showed 91.2%, lipid: 0.5%, ash: 3.6%, moisture: 2.3%, Total Volatile Nitrogen: 10 ml/100gr and peroxide: 5meq/kg. Amino acids and fatty acids were also determined. Bacteria and Fungi were lower than 1000 colony. Samples are kept in different condition of temperature (5, 20 and 35 degree centigrade), humidity (25, 40 and 90 percent) and light and dark environment in six month. Lipid rate in FPC after 6 months in VP and MAP (60% C02, 30 % N2 and 10% O2), packages was decreased but was not significant (P>0.05). It was also detected that increase temperature lead to more decrease in lipid content. Protein rate of FPC was decreased from 91.2% to 73.6% during six months at 35°C in VP Package and from 91.2% to 69.4% in MAP package. These changes were significant (P<0.05). TVN and PV rate in FPC after 6 months in VP and MAP packages was increased but was significant (P<0.05). Amino acids and fatty acids were also determined. But more changes in MAP packages was detected.
Resumo:
The article presents the environmental impacts of aquaculture and the ways to manage them. The environmental impacts include issues of recreation and aesthetics, and the usage of resources and discharge of nutrients and organic matter into the environment. Likewise, the results are also discussed, such as reduced production, disease outbreak in cultured and wild populations, and an increase of regulatory restrictions being placed on aquaculture operations.
Resumo:
In this experiment, the feeding of Indian white shrimp larvae by unenriched rotifers (treatment 1) and enriched with highly unsaturated fatty acid (treatment 2) and highly unsaturated fatty acid along with vitamin C (treatment 3) on the growth factors, survival and resistance against salinity and formalin stress tests were studied and their differences with control treatment including newly hatched Artemia nauplii is compared. In this the study four treatments in a completely randomized design with 3 replicates per treatment were used. Farming of shrimp larvae of Zoea II to postlarvae 5 was done in 20 liter plastic bucket. Present results indicated that growth factors and survival rate of stage Zoea II to postlarvae 1 in treatments 1, 2 and 3 improve rather than control in which this case was due to optimal size rotifer rather than Artemia nauplii. Also, treatments 2 and 3 feeding with oil liver cod emulsion enriched rotifer have the highest concentration of DHA (mg/g DW) and the ratio DHA/EPA in which due to have shown the highest growth factors and a significant difference (P<0.05) with treatments 1 and control. The highest survival at stage PL1 were observed in treatment 3 that was enriched with ascorbyl palmitate in which have to the synergistic properties of vitamin C rather than treatments 2, 1 and control and showed a significant difference (P<0.05). But in stage PL5 the highest amount of growth and survival rates were related to control treatment which showed a significant difference (P<0.05) with other treatments that control has higher size rather than treatments 1, 2 and 3. Also, among experiment treatments that the two treatments 2 and 3 due to enrichment had higher growth and survival rates compared with treatment 1 in which their differences have also been significant (P<0.05). In the case of stress tests, results indicated that the highest survival rate has been reported when specimens were offered a diet containing high levels of highly unsaturated fatty acids with vitamin C. So that in stage PL1 in the salinity stress tests 10 and 20 ppt the highest survival rate was observed in treatment 3. As for the second, treatment 2 showed a significant difference (P<0.05) with treatment 3. It is worth mentioning that treatment 3 showed a higher survival rate compared to treatment 2 due to the synergistic properties of vitamin C. The difference between these two treatments with treatment 1 and control was also significant. No significant difference was observed in formalin stress test 100 ppm in this stage between treatments 3 and 2 which shows the highest survival rate. But their difference with treatments 1 and control was significant (P<0.05). Also, in stage PL5 in the salinity stress tests 10 and 20 ppt the highest survival rate was observed in treatment 3 which showed no significant difference (P<0.05) with control treatment. While their difference in the amount of survival rate with treatment 1 and 2 was significant (P<0.05). In this stage, the highest observed survival rate in formalin stress test 100 ppm included treatments control, 3 and 2 among which there were no significant differences (P<0.05). While the difference between these three treatments with treatment 1 was significant.
Resumo:
Source of the Nile Fish farm (SON) is located at Bugungu area in Napoleon Gulf, northern Lake Victoria. The proprietors of the farm requested for technical assistance of NaFIRRI to undertake regular environment monitoring of the cage site as is mandatory under the NEMA conditions. As the SON is a key collaborator/client of the institute, NAFIRRI agreed to undertake the assignment subject to facilitation by the client. The institute agreed to conduct quarterly surveys of key environmental parameters at the site including selected physical-chemical and biological factors, nutrient status, column depth, water transparency and sedimentation. Samples and field measurements were to be taken at 3 sites: within and/or close to the fish cages (WIC), upstream (USC) and downstream (DSC) of the cages. The first environmental monitoring survey was undertaken in February 2011; the second in May 2011 and the third in September 2011. The surveys cover physical-chemical parameters, nutrient status, invertebrate and fish communities. The present report presents field observations made for the fourth quarter survey undertaken in November 2011 and provides a scientific interpretation and discussion of the results with reference to possible impacts of the cage facilities to the water environment and the different aquatic biota at and around the cage site including natural fish communities.
Resumo:
Fresh water and fish are important to the people who live in the Lake Victoria region therefore the quality of the water and fish is of major importance (Johnson & Odada, 1996). It is well known that dirty water and spoilt fish can lead to poor health and lower standards of living, and that quality can be affected by the pollution in the environment. Even though Lake Victoria is very large, it is relatively shallow and the water remains in the lake basin for a long time (Bootsma & Hecky, 1993). There are a number of environmental issues in Lake Victoria, including water hyacinth~over-population and increased farming causing problems with the lake ecosystem. All these factors combine to keep contaminants within the lake for long time, which will lead to gradually increasing concentrations in the lake. Pollution is a term that covers a wide variety of chemicals and physical changes and their adverse effects on the environment. Here we focus on contaminants, which are unwanted chemicals introduced to the environment. Contaminants include a very wide variety of chemicals, both man-made and natural, for example, mercury, pesticides and herbicides, heavy metals, and natural plant and algae toxins. Many contaminants do not always lead to adverse effects immediately, but can gradually induce long-term problems leading to chronic illnesses and physical damage. A few contaminants have very rapid impacts resulting in immediately obvious changes such as death or injury. Sources of contaminants are varied. Contaminants can get in the lake by the way of agricultural treatment of crops near the lake, industrial effluent, intentional introduction such as fish poisoning byfishermen, natural sources such as heavy metals from particular types of rocks, and even some plants naturally release their toxins. Contaminant sources are not always found near Lake Victoria.
Resumo:
Source of the Nile (SON) Cage Fish farm is located at Bugungu in Napoleon Gulf, northern Lake Victoria, near the headwaters of the River Nile. NaFIRRI has, through a Public-Private collaborative partnership with SON management, undertaken quarterly monitoring of the cage fish farm since 2011. The objective of the environment monitoring is to track possible environment and biological changes as a result of fish cage operations in the area. The agreed study areas cover selected physical-chemical parameters i.e. water depth, transparency, column temperature, dissolved oxygen, pH and conductivity; nutrient status; and biological parameters i.e. algae, zooplankton, macro-benthos and fish communities. The fourth quarter survey, which is the subject of this report was undertaken during December 2015. Results/observations made are presented in this technical report along with a scientific interpretation and discussion of the results with reference to possible impacts of the cage facilities to the water environment and aquatic biota. The present report presents field observations made for the fourth quarter survey undertaken in December 2015 and provides a scientific interpretation and discussion of the results with reference to possible impacts of the cage facilities to the water environment and the different aquatic biota in and around the fish cage site.