989 resultados para Environment protected
Resumo:
In many river floodplains in the UK, there has been a long history of flood defence, land reclamation and water regime management for farming. In recent years, however, changing European and national policies with respect to farming, environment and flood management are encouraging a re-appraisal of land use in rural areas. In particular, there is scope to develop, through the use of appropriate promotional mechanisms, washland areas, which will simultaneously accommodate winter inundation, support extensive farming methods, deliver environmental benefits, and do this in a way which can underpin the rural economy. This paper explores the likely economic impacts of the development of flood storage and washland creation. In doing so, consideration is given to feasibility of this type of development, the environmental implications for a variety of habitats and species, and the financial and institutional mechanisms required to achieve implementation. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
An aggregated farm-level index, the Agri-environmental Footprint Index (AFI), based on multiple criteria methods and representing a harmonised approach to evaluation of EU agri-environmental schemes is described. The index uses a common framework for the design and evaluation of policy that can be customised to locally relevant agri-environmental issues and circumstances. Evaluation can be strictly policy-focused, or broader and more holistic in that context-relevant assessment criteria that are not necessarily considered in the evaluated policy can nevertheless be incorporated. The Index structure is flexible, and can respond to diverse local needs. The process of Index construction is interactive, engaging farmers and other relevant stakeholders in a transparent decision-making process that can ensure acceptance of the outcome, help to forge an improved understanding of local agri-environmental priorities and potentially increase awareness of the critical role of farmers in environmental management. The structure of the AFI facilitates post-evaluation analysis of relative performance in different dimensions of the agri-environment, permitting identification of current strengths and weaknesses, and enabling future improvement in policy design. Quantification of the environmental impact of agriculture beyond the stated aims of policy using an 'unweighted' form of the AFI has potential as the basis of an ongoing system of environmental audit within a specified agricultural context. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The EU-funded research project ALARM will develop and test methods and protocols for the assessment of large-scale environmental risks in order to minimise negative human impacts. Research focuses on the assessment and forecast of changes in biodiversity and in the structure, function, and dynamics of ecosystems. This includes the relationships between society, the economy and biodiversity.
Resumo:
Dormancy is an adaptive trait in seed populations that helps ensure that seed germination is distributed over time and occurs in environmental conditions suitable for seedling growth. Several genes.. associated with seed dormancy in various plant species, have been integrated into a hypothetical dormancy model for Avena fatua L. (wild oats). Generally, the synthesis of, and sensitivity to, abscisic acid (ABA) during imbibition determines whether genes similar to those during maturation are expressed leading to a maintenance of dormancy during extended imbibition. Alternatively, there may be a shift towards expression of genes associated with gibberellins leading to germination. Environmental factors during maturation, after-ripening and imbibition are likely to interact with the genotype to affect gene expression and hence whether or not a seed germinates. In spite of the difficulties of working on a hexaploid species, A. fatua was selected for study because of its worldwide importance as a weed. Dormant and non-dormant genotypes of this species were also available. Gene expression studies are being carried out on three A.fatua genotypes produced tinder different environmental conditions to investigate the role of specific genes in dormancy and genotype X environment interactions in relation to dormancy.
Resumo:
Indehiscent fruits of six tree species, common in Matabeleland were examined in in vitro and in vivo trials. The results for two of them, Acacia nilotica and Dichrostachys cinerea are presented here. Acacia nilotica-contained more total phenolics than D. cinerea, but less nitrogen (N) and fibre (ADF and NDF). After 48 h incubation, in vitro OMD of both species was increased by PEG and NaOH or wood ash treatment, except when NaOH or wood ash were used in combination with PEG with D. cinerea fruits. DM intake, DMD were lowest and N-retention negative in goats fed A. nilotica as supplement. However when fed a supplement of D. cinerea, untreated or treated with PEG or NaOH, digestibility and N-retention were highest, and similar to a commercial goat meal, with the untreated fruit. In a trial in which milking does were supplemented with D. cinerea fruits, for 65 before and 65 days after kidding, kid birthweight and weaning weight were increased by supplementation. Deaths of twin-born kids were lowest in the supplemented but unmilked group. Supplementation with D. cinerea fruit resulted in improved goat performance. The only treatment applied of practical significance, wood ash, is currently being tested in an in vivo study. More research is required on detoxification of tannins, especially with A. nilotica. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
One of the major factors contributing to the failure of new wheat varieties is seasonal variability in end-use quality. Consequently, it is important to produce varieties which are robust and stable over a range of environmental conditions. Recently developed sample preparation methods have allowed the application of FT-IR spectroscopic imaging methods to the analysis of wheat endosperm cell wall composition, allowing the spatial distribution of structural components to be determined without the limitations of conventional chemical analysis. The advantages of the methods, described in this paper, are that they determine the composition of endosperm cell walls in situ and with minimal modification during preparation. Two bread-making wheat cultivars, Spark and Rialto, were selected to determine the impact of environmental conditions on the cell-wall composition of the starchy endosperm of the developing and mature grain, focusing on the period of grain filling (starting at about 14 days after anthesis). Studies carried out over two successive seasons show that the structure of the arabinoxylans in the endosperm cell walls changes from a highly branched form to a less branched form. Furthermore, during development the rate of restructuring was faster when the plants were grown at higher temperature with restricted water availability from 14 days after anthesis with differences in the rate of restructuring occurring between the two cultivars.
Resumo:
Plasmodiophora brassicae Wor. is viewed in this article from the standpoint of a highly evolved and successful organism, well fitted for the ecological niche that it occupies. Physical, chemical, and biological components of the soil environment are discussed in relation to their effects on the survival, growth, and reproduction of this microbe. It is evident that P. brassicae is well equipped by virtue of its robust resting spores for survival through many seasonal cycles. Germination is probably triggered as a result of signals initiated by root exudates. The resultant motile zoospore moves rapidly to the root hair surface and penetration and colonization follow. The short period between germination and penetration is one of greatest vulnerability for P. brassicae. In this phase survival is affected at the very least by soil texture and structure; its moisture; pH; calcium, boron, and nitrogen content; and the presence of active microbial antagonists. These factors influence the inoculum potential (sensu Garrett, 1956) and its viability and invasive capacity. There is evidence that these effects may also influence differentially the survival of some physiologic races of P. brassicae. Considering the interaction of P. brassicae with the soil environment from the perspective of its biological fitness is an unusual approach; most authors consider only the opportunities to destroy this organism. The approach adopted here is borne of several decades spent studying P. brassicae and the respect that has been engendered for it as a biological entity. This review stops at the point of penetration, although some of the implications of the environment for successful colonization are included because they form a continuum. Interactions with the molecular and biochemical cellular environment are considered in other sections in this special edition.
Resumo:
Organic sweet maize consists of a new industrial crop product. Field experiment was conducted to determine the effects of cultural systems on growth, photosynthesis and yield components of sweet maize crop (Zea mays L. F-1 hybrid 'Midas'). A randomized complete block design was employed with four replicates per treatment (organic fertilization: cow manure (5, 10 and 20 t ha(-1)), poultry manure (5, 10 and 20 t ha(-1)) and barley mulch (5, 10 and 20 t ha(-1)), synthetic fertilizer (240 kg N ha(-1)): 21-0-0 and control). The lowest dry weight, height and leaf area index and sod organic matter were measured in the control treatment. Organic matter content was proportionate to the amount of manure applied. The control plots had the lowest yield (1593 kg ha(-1)) and the double rate cow manure plots the had,greatest one. (6104 kg ha(-1)). High correlation between sweet corn yield and organic matter was registered. Moreover, the lowest values of 1000-grain weight were obtained with control plot. The fertilizer plot gave values which were similar to the full rate cow manure treatment. The photosynthetic race of the untreated control was significantly lower than that of the other treatments. The phorosynthetic rate increased as poultry manure and barley mulch ram decreased and as cow manure increased. Furthermore the untreated control had the lowest stomatal conductance and chlorophyll content. Our results indicated that sweet corn growth and yield in the organic plots was significantly higher than those in the conventional plots.
Resumo:
Collaborative software is usually thought of as providing audio-video conferencing services, application/desktop sharing, and access to large content repositories. However mobile device usage is characterized by users carrying out short and intermittent tasks sometimes referred to as 'micro-tasking'. Micro-collaborations are not well supported by traditional groupware systems and the work in this paper seeks out to address this. Mico is a system that provides a set of application level peer-to-peer services for the ad-hoc formation and facilitation of collaborative groups across a diverse mobile device domain. The system builds on the Java ME bindings of the JXTA P2P protocols, and is designed with an approach to use the lowest common denominators that are required for collaboration between varying degrees of mobile device capability. To demonstrate how our platform facilitates application development, we built an exemplary set of demonstration applications and include code examples here to illustrate the ease and speed afforded when developing collaborative software with Mico.
Resumo:
Relationships between weather, agronomic factors and wheat disease abundance were examined to determine possible causes of variability on century time scales. In archived samples of wheat grain and leaves obtained from the Rothamsted Broadbalk experiment archive (1844-2003), amounts of wheat, Phaeosphaeria nodorum and Mycosphaerella graminicola DNA were determined by quantitative polymerase chain reaction (PCR). Relationships between amounts of pathogens and environmental and agronomic factors were examined by multiple regression. Wheat DNA decayed at approx. 1% yr(-1) in stored grain. No M. graminicola DNA was detected in grain samples. Fluctuations in amounts of P. nodorum in grain were related to changes in spring rainfall, summer temperature and national SO2 emission. Differences in amounts of P. nodorum between grain and leaf were related to summer temperature and spring rainfall. In leaves, annual variation in spring rainfall affected both pathogens similarly, but SO2 had opposite effects. Previous summer temperature had a highly significant effect on M. graminicola. Cultivar effects were significant only at P = 0.1. Long-term variation in P. nodorum and M. graminicola DNA in leaf and grain over the period 1844-2003 was dominated by factors related to national SO2 emissions. Annual variability was dominated by weather factors occurring over a period longer than the growing season.
Resumo:
Apoptosis induced by the death-inducing ligand FasL (CD95L) is a major mechanism of cell death. Trophoblast cells express the Fas receptor yet survive in an environment that is rich in the ligand. We report that basal nitric oxide (NO) production is responsible for the resistance of trophoblasts to FasL-induced apoptosis. In this study we demonstrate that basal NO production resulted in the inhibition of receptor clustering following ligand binding. In addition NO also protected cells through the selective nitrosylation, and inhibition, of protein kinase Cepsilon (PKCepsilon) but not PKCalpha. In the absence of NO production PKCepsilon interacted with, and phosphorylated, the anti-apoptotic protein cFLIP. The interaction is predominantly with the short form of cFLIP and its phosphorylation reduces its recruitment to the death-inducing signaling complex (DISC) that is formed following binding of a death-inducing ligand to its receptor. Inhibition of cFLIP recruitment to the DISC leads to increased activation of caspase 8 and subsequently to apoptosis. Inhibition of PKCepsilon using siRNA significantly reversed the sensitivity to apoptosis induced by inhibition of NO synthesis suggesting that NO-mediated inhibition of PKCepsilon plays an important role in the regulation of Fas-induced apoptosis.