975 resultados para Entire functions in the Laguerre-P


Relevância:

100.00% 100.00%

Publicador:

Resumo:

B cell abnormalities contribute to the development and progress of autoimmune disease. Traditionally, the role of B cells in autoimmune disease was thought to be predominantly limited to the production of autoantibodies. Nevertheless, in addition to autoantibody production, B cells have other functions potentially relevant to autoimmunity. Such functions include antigen presentation to and activation of T cells, expression of costimulatory molecules and cytokine production. Recently, the ability of B cells to negatively regulate cellular immune responses and inflammation has been described and the concept of “regulatory B cells” has emerged. A variety of cytokines produced by regulatory B cell subsets have been reported with interleukin-10 (IL-10) being the most studied. IL-10-producing regulatory B cells predominantly localize within a rare CD1dhiCD5+ B cell subset in mice and the CD24hiCD27+ B cell subset in adult humans. This specific IL-10-producing subset of regulatory B cells have been named “B10 cells” to highlight that the regulatory function of these rare B cells is primarily mediated by IL-10, and to distinguish them from other regulatory B cell subsets that regulate immune responses through different mechanisms. B10 cells have been studies in a variety of animal models with autoimmune disease and clinical settings of human autoimmunity. There are many unsolved questions related to B10 cells including their surface phenotype, their origin and development in vivo, and their role in autoimmunity.

In Chapter 3 of this dissertation, the role of the B cell receptor (BCR) in B10 cell development is highlighted. First, the BCR repertoire of mouse peritoneal cavity B10 cells is examined by single cell sequencing; peritoneal cavity B10 cells have clonally diverse germline BCRs that are predominantly unmutated. Second, mouse B10 cells are shown to have higher frequencies of λ+ BCRs compared to non-B10 cells which may indicate the involvement of BCR light chain editing early in the process of B10 cell development in vivo. Third, human peripheral blood B10 cells are examined and are also found to express higher frequencies of λ chains compared to non-b10 cells. Therefore, B10 cell BCRs are clonally diverse and enriched for unmutated germline sequences and λ light chains.

In Chapter 4 of this dissertation, B10 cells are examined in the healthy developing human across the entire age range of infancy, childhood and adolescence, and in a large cohort of children with autoimmunity. The study of B10 cells in the developing human documents a massive transient expansion during middle childhood when up to 30% of blood B cells were competent to produce IL-10. The surface phenotype of pediatric B10 cells was variable and reflective of overall B cell development. B10 cells down-regulated CD4+ T cell interferon-gamma (IFN-γ) production through IL-10-dependent pathways and IFN-γ inhibited whereas interleukin-21 (IL-21) promoted B cell IL-10 competency in vitro. Children with autoimmunity had a contracted B10 cell compartment, along with increased IFN-γ and decreased IL-21 serum levels compared to age-matched healthy controls. The decreased B10 cell frequencies and numbers in children with autoimmunity may be partially explained by the differential regulation of B10 cell development by IFN-γ and IL-21 and alterations in serum cytokine levels. The age-related changes of the B10 cell compartment during normal human development provide new insights into immune tolerance mechanisms involved in inflammation and autoimmunity.

These studies collectively demonstrate that BCR signals are the most important early determinant of B10 cell development in vivo, that human B10 cells are not a surface phenotype defined developmental B cell subset but a functionally defined regulatory B cell subset that regulates CD4+ T IFN-γ production through IL-10-dependent pathways and that human B10 cell development can be regulated by soluble factors in vivo such as the cytokine milieu. The findings of these studies provide new insights into immune tolerance mechanisms involved in human autoimmunity and the potent effects of IL-21 on human B cell IL-10 competence in vitro open new horizons in the development of autologous B10 cell-based therapies as an approach to treat human autoimmune disease in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phosphorus is an essential nutrient for life. In the ocean, phosphorus burial regulates marine primary production**1, 2. Phosphorus is removed from the ocean by sedimentation of organic matter, and the subsequent conversion of organic phosphorus to phosphate minerals such as apatite, and ultimately phosphorite deposits**3, 4. Bacteria are thought to mediate these processes**5, but the mechanism of sequestration has remained unclear. Here, we present results from laboratory incubations in which we labelled organic-rich sediments from the Benguela upwelling system, Namibia, with a 33P-radiotracer, and tracked the fate of the phosphorus. We show that under both anoxic and oxic conditions, large sulphide-oxidizing bacteria accumulate 33P in their cells, and catalyse the nearly instantaneous conversion of phosphate to apatite. Apatite formation was greatest under anoxic conditions. Nutrient analyses of Namibian upwelling waters and sediments suggest that the rate of phosphate-to-apatite conversion beneath anoxic bottom waters exceeds the rate of phosphorus release during organic matter mineralization in the upper sediment layers. We suggest that bacterial apatite formation is a significant phosphorus sink under anoxic bottom-water conditions. Expanding oxygen minimum zones are projected in simulations of future climate change**6, potentially increasing sequestration of marine phosphate, and restricting marine productivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Insel Felsenburg, the most popular of the German Robinsonades, the link between this novelistic subgenre and utopia becomes obvious, because, unlike what had been the case in Robinson Crusoe, the island functions as a contrast with respect to the starting point: Europe, conceived as unmoral and far away from God. The Felsenburg Island becomes a symbol of a patriarchal-bourgeois ideal society, whose centre is the family. It is conceivable that this idealized sociability form is reelaborated in the last third of the 18th Century, when the utopian story is temporalized and the Robinsonades lose their force. Novels such as Anton Reiser and Wilhem Meisters Lehjahre testify for these transformations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports the findings from a study of the learning of English intonation by Spanish speakers within the discourse mode of L2 oral presentation. The purpose of this experiment is, firstly, to compare four prosodic parameters before and after an L2 discourse intonation training programme and, secondly, to confirm whether subjects, after the aforementioned L2 discourse intonation training, are able to match the form of these four prosodic parameters to the discourse-pragmatic function of dominance and control. The study designed the instructions and tasks to create the oral and written corpora and Brazil’s Pronunciation for Advanced Learners of English was adapted for the pedagogical aims of the present study. The learners’ pre- and post-tasks were acoustically analysed and a pre / post- questionnaire design was applied to interpret the acoustic analysis. Results indicate most of the subjects acquired a wider choice of the four prosodic parameters partly due to the prosodically-annotated transcripts that were developed throughout the L2 discourse intonation course. Conversely, qualitative and quantitative data reveal most subjects failed to match the forms to their appropriate pragmatic functions to express dominance and control in an L2 oral presentation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies show that higher order oscillatory interactions such as cross-frequency coupling are important for brain functions that are impaired in schizophrenia, including perception, attention and memory. Here we investigated the dynamics of oscillatory coupling in the hippocampus of awake rats upon NMDA receptor blockade by ketamine, a pharmacological model of schizophrenia. Ketamine (25, 50 and 75 mg/kg i.p.) increased gamma and high-frequency oscillations (HFO) in all depths of the CA1-dentate axis, while theta power changes depended on anatomical location and were independent of a transient increase of delta oscillations. Phase coherence of gamma and HFO increased across hippocampal layers. Phase-amplitude coupling between theta and fast oscillations was markedly altered in a dose-dependent manner: ketamine increased hippocampal theta-HFO coupling at all doses, while theta-gamma coupling increased at the lowest dose and was disrupted at the highest dose. Our results demonstrate that ketamine alters network interactions that underlie cognitively relevant theta-gamma coupling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies show that higher order oscillatory interactions such as cross-frequency coupling are important for brain functions that are impaired in schizophrenia, including perception, attention and memory. Here we investigated the dynamics of oscillatory coupling in the hippocampus of awake rats upon NMDA receptor blockade by ketamine, a pharmacological model of schizophrenia. Ketamine (25, 50 and 75 mg/kg i.p.) increased gamma and high-frequency oscillations (HFO) in all depths of the CA1-dentate axis, while theta power changes depended on anatomical location and were independent of a transient increase of delta oscillations. Phase coherence of gamma and HFO increased across hippocampal layers. Phase-amplitude coupling between theta and fast oscillations was markedly altered in a dose-dependent manner: ketamine increased hippocampal theta-HFO coupling at all doses, while theta-gamma coupling increased at the lowest dose and was disrupted at the highest dose. Our results demonstrate that ketamine alters network interactions that underlie cognitively relevant theta-gamma coupling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The production of reactive oxygen species (ROS) within endothelial cells may have several effects, including alterations in the activity of paracrine factors, gene expression, apoptosis, and cellular injury. Recent studies indicate that a phagocyte-type NAD(P)H oxidase is a major source of endothelial ROS. In contrast to the high-output phagocytic oxidase, the endothelial enzyme has much lower biochemical activity and a different substrate specificity (NADH.NADPH). In the present study, we (1) cloned and characterized the cDNA and predicted amino acid structures of the 2 major subunits of rat coronary microvascular endothelial cell NAD(P)H oxidase, gp91-phox and p22-phox; (2) undertook a detailed comparison with phagocytic NADPH oxidase sequences; and (3) studied the subcellular location of these subunits in endothelial cells. Although these studies revealed an overall high degree of homology (.90%) between the endothelial and phagocytic oxidase subunits, the endothelial gp91-phox sequence has potentially important differences in a putative NADPH-binding domain and in putative glycosylation sites. In addition, the subcellular location of the endothelial gp91-phox and p22-phox subunits is significantly different from that reported for the neutrophil oxidase, in that they are predominantly intracellular and collocated in the vicinity of the endoplasmic reticulum. This first detailed characterization of gp91-phox and p22-phox structure and location in endothelial cells provides new data that may account, in part, for the differences in function between the phagocytic and endothelial NAD(P)H oxidases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents an analysis of the largest catalog to date of infrared spectra of massive young stellar objects in the Large Magellanic Cloud. Evidenced by their very different spectral features, the luminous objects span a range of evolutionary states from those most embedded in their natal molecular material to those that have dissipated and ionized their surroundings to form compact HII regions and photodissociation regions. We quantify the contributions of the various spectral features using the statistical method of principal component analysis. Using this analysis, we classify the YSO spectra into several distinct groups based upon their dominant spectral features: silicate absorption (S Group), silicate absorption and fine-structure line emission (SE), polycyclic aromatic hydrocarbon (PAH) emission (P Group), PAH and fine-structure line emission (PE), and only fine-structure line emission (E). Based upon the relative numbers of sources in each category, we are able to estimate the amount of time massive YSOs spend in each evolutionary stage. We find that approximately 50% of the sources have ionic fine-structure lines, indicating that a compact HII region forms about half-way through the YSO lifetime probed in our study. Of the 277 YSOs we collected spectra for, 41 have ice absorption features, indicating they are surrounded by cold ice-bearing dust particles. We have decomposed the shape of the ice features to probe the composition and thermal history of the ice. We find that most the CO2 ice is embedded a polar ice matrix that has been thermally processed by the embedded YSO. The amount of thermal processing may be correlated with the luminosity of the YSO. Using the Australia Telescope Compact Array, we imaged the dense gas around a subsample of our sources in the HII complexes N44, N105, N113, and N159 using HCO+ and HCN as dense gas tracers. We find that the molecular material in star forming environments is highly clumpy, with clumps that range from subparsec to ~2 parsecs in size and with masses between 10^2 to 10^4 solar masses. We find that there are varying levels of star formation in the clumps, with the lower-mass clumps tending to be without massive YSOs. These YSO-less clumps could either represent an earlier stage of clump to the more massive YSO-bearing ones or clumps that will never form a massive star. Clumps with massive YSOs at their centers have masses larger than those with massive YSOs at their edges, and we suggest that the difference is evolutionary: edge YSO clumps are more advanced than those with YSOs at their centers. Clumps with YSOs at their edges may have had a significant fraction of their mass disrupted or destroyed by the forming massive star. We find that the strength of the silicate absorption seen in YSO IR spectra feature is well-correlated with the on-source HCO+ and HCN flux densities, such that the strength of the feature is indicative of the embeddedness of the YSO. We estimate that ~40% of the entire spectral sample has strong silicate absorption features, implying that the YSOs are embedded in circumstellar material for about 40% of the time probed in our study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been reported that fetal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) causes defects in the male reproductive system of the rat. We set out to replicate and extend these effects using a robust experimental design. Groups of 75 (control vehicle) or 55 (50, 200 or 1000 ng of TCDD kg-1 bodyweight) female Wistar(Han) rats were exposed to TCDD on Gestational Day (GD) 15, then allowed to litter. The high dose group dams showed no sustained weight loss compared to control, but four animals had total litter loss. Pups in the high dose group showed reduced body weight up till day 21, and pups in the medium dose group showed reduced body weight in the first week post partum. Balano-preputial separation (BPS) was significantly delayed in the high dose group male offspring. There were no significant effects of treatment when the offspring were subjected to a functional observational battery, or mated with females to assess reproductive capability. 25 males per group were killed on post natal day (PND) 70, and ~60 animals per group (~30 for the high dose group) on PND120 to assess seminology and other endpoints. At PND120, the two highest dose groups showed a statistically significant elevation of sperm counts, compared to control; however, this effect was small (~30%), within the normal range of sperm counts for this strain of rat, was not reflected in testicular spermatid counts nor PND70 data, and is therefore postulated to have no biological significance. Although there was an increase in the proportion of abnormal sperm at PND70, seminology parameters were otherwise unremarkable. Testis weights in the high dose group were slightly decreased at PND 70 and 120, and at PND120, brain weights were decreased in the high dose group, liver to body weight ratios were increased for all three dose groups, with an increase in inflammatory cell foci in the epididymis in the high dose group. These data show that TCDD is a potent developmental toxin after exposure of the developing fetus, but that acute developmental exposure to TCDD on GD15 caused no decrease in sperm counts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated whether fetal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) causes defects in the male reproductive system of the rat, using chronically exposed rats to ensure continuous exposure of the fetus. 5-6 week old rats were exposed to control diet, or diet containing TCDD, to attain an average dose of 2.4, 8 and 46 ng TCDD kg-1 day-1 for twelve weeks, whereupon the rats were mated, and allowed to litter; rats were switched to control diet after parturition. Male offspring were allowed to develop until kills on PND70 (25 per group), or PND120 (all remaining animals). Offspring from the high dose group showed an increase in total litter loss, and the number of animals alive on post-natal day (PND) 4 in the high dose group was ~26% less than control. The high and medium dose offspring showed decreased weights at various ages. Balano-preputial separation was significantly delayed in all three dose groups, compared to control. There were no significant effects of maternal treatment when the offspring were subjected to a functional observational battery, or learning tests, with the exception that the high dose group showed a deficit in motor activity. 20 rats per group were mated to females, and there were no significant effects of maternal treatment on the fertility of these rats, nor on the F1 or F2 sex ratio. Sperm parameters at PND70 and 120 showed no significant effect of maternal treatment, with the exception that there was an increase in the proportion of abnormal sperm in the high dose group at PND70; this is associated with the developmental delay in puberty in this dose group. There were no remarkable findings of maternal treatment on organ weights, with the exception that testis weights were reduced by ~10% at PND70 (but not PND120), and although the experiment was sufficiently powered to detect small changes, ventral prostate weight was not reduced. There were no significant effects of maternal treatment upon histopathological comparison of high dose and control group organs. These data confirm that developmental exposure to TCDD shows no potent effect on adult sperm parameters or accessory sexual organs, but show that delay in BPS occurs after exposure to low doses of TCDD, and this is dependent upon whether TCDD is administered acutely or chronically.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intestinal tract is exposed to a large variety of antigens such as food proteins, commensal bacteria and pathogens and contains one of the largest arms of the immune system. The intestinal immune system has to discriminate between harmless and harmful antigens, inducing tolerance to harmless antigens and active immunity towards pathogens and other harmful materials. Dendritic cells (DC) in the mucosal lamina propria (LP) are central to this process, as they sample bacteria from the local environment and constitutively migrate to the draining mesenteric lymph nodes (MLN), where they present antigen to naïve T cells in order to direct an appropriate immune response. Despite their crucial role, understanding the function and phenotype of LP DC has been hampered by the fact that they share phenotypic markers with macrophages (mφ), which are the dominant population of mononuclear phagocyte (MP) in the LP. Recent work in our own and other laboratories has established gating strategies and phenotyping panels that allow precise discrimination between intestinal DC and mφ using the mφ specific markers CD64 and F4/80. In this way four bona fide DC subsets with distinct functions have been identified in adult LP based on their expression of CD11b and CD103 and a major aim of my project was to understand how these subsets might develop in the neonatal intestine. At the beginning of my PhD, the laboratory had used these new methods to show that signal regulatory protein α (SIRPα), an inhibitory receptor expressed by myeloid cells, was expressed by mφ and most DC in the intestine, except for those expressing CD103 alone. In addition, mice carrying a non-signalling mutation in SIRPα (SIRPα mt) had a selective reduction in CD103+CD11b+ DC, a subset which is unique to the intestinal LP. This was the basis for the initial experiments of my project, described in Chapter 3, where I investigated if the phenotype in SIRPα mt mice was intrinsic to haematopoietic cells or not. To explore this, I generated bone marrow (BM) chimeric mice by reconstituting irradiated WT mice with SIRPα mt BM, or SIRPα mt animals with WT BM. These experiments suggested that the defect in CD103+CD11b+ DC was not replicated in DC derived from BM of SIRPα origin. However as this seemed inconsistent with other data, I considered the possibility that 18 the phenotype may have been lost with age, as the BM chimeric mice were considerably older than those used in the original studies of SIRPα function. However a comparison of DC subsets in the intestine of WT and SIRPα mt mice as they aged provided no conclusive evidence to support this idea. As these experiments did show age-dependent effects on DC subsets, in Chapter 4, I went on to investigate how the DC populations appeared in the intestine and other tissues in the neonatal period. These experiments showed there were few CD103+CD11b+ DC present in the LP and migratory DC compartment of the MLN in the neonate and that as this population gradually increased in proportion with age, there was a reciprocal decrease in the relative proportion of CD103-CD11b+ DC. Interestingly, most of the changes in DC numbers in the intestine were found during the second or third week of life when the weaning process began. To validate my findings that there were few CD103+CD11b+ DC in the neonate and that this was not merely an absence of CD103 upregulation, I examined the expression of CD101 and Trem-1, markers that other work in the laboratory had suggested were specific to the CD103+CD11b+ DC lineage. My work showed that CD101 and Trem-1 were co- expressed by most CD103+CD11b+ DC in small intestine (SI) LP, as well as a small subset of CD103-CD11b+ DC in this tissue. Interestingly, Trem-1 was highly specific to the SI LP and migratory DC in the MLN, but absent from the colon and other tissues. CD101 expression was also only found on CD11b+ DC, but showed a less restricted pattern of distribution, being found in several tissues as well as the SI LP. The relative timing of their development suggested there might be a relationship between CD103+CD11b+ and CD103-CD11b+ DC and this was supported by microarray analysis. I hypothesised that the CD103-CD11b+ DC that co-expressed CD101 and Trem-1 may be the cells that developed into CD103+CD11b+ DC. To investigate this I analysed how CD101 and Trem-1 expression changed with age amongst the DC subsets in SI LP, colonic LP (CLP) and MLN. The proportion of CD101+Trem-1+ cells increased amongst CD103+CD11b+ DC in the SI LP and MLN with age, while amongst CD103+CD11b+ DC in the CLP this decreased. This was not the same in CD103-CD11b+ DC, where CD101 and Trem-1 expression was more varied with age in all tissues. CD101 and Trem-1 were not expressed to any great extent on CD103+CD11b- or CD103-CD11b- DC. The phenotypic development of the 19 intestinal DC subsets was paralleled by the gradual upregulation of CD103 expression, while the production of retinoic acid (RA), as assessed by the AldefluorTM assay, was low early in life and did not attain adult levels until after weaning. Thus DC in the neonatal intestine take some time to acquire the adult pattern of phenotypic subsets and are functionally immature compared with their adult counterparts. In Chapter 5, I used CD101 and Trem-1 to explore the ontogeny of intestinal DC subsets in CCR2-/- and SIRPα mt mice, both of which have selective defects in one particular group of DC. The selective defect seen amongst CD103+CD11b+ DC in adult SIRPα mt mice was more profound in mice at D7 and D14 of age, indicating that it may be intrinsic to this population and not highly dependent on environmental factors that change after birth. The expression of CD101 and Trem-1 by both CD103+CD11b+ and CD103-CD11b+ DC was reduced in SIRPα mt mice, again indicating that this entire lineage was affected by the lack of SIRPα signalling. However there was also a generalised defect in the numbers of all DC subsets in many tissues from early in life, suggesting there was compromised development, recruitment or survival of DC in the absence of SIRPα signalling. In contrast to the findings in SIRPα mt mice, more CD103+CD11b+ DC co-expressed CD101 and Trem-1 in CCR2-/- mice, while there were no differences in the expression of these molecules amongst CD103-CD11b+ DC. This may suggest that CCR2+ CD103-CD11b+ DC are not the cells that express CD101 and Trem-1 that are predicted to be the direct precursors of CD103+CD11b+ DC. I also examined the expression of DC growth factor receptors on DC subsets from mice of different ages, but no clear age or subset- related patterns of the expression of mRNA for Csf2ra, Irf4, Tgfbr1 and Rara could be observed. Next, I investigated whether Trem-1 played any role in DC development. Preliminary experiments in Trem-1-/- mice show no differences between any of the DC subsets, nor were there any selective effects on individual subsets when DC development from Trem-1-/- KO and WT BM was compared in competitive chimeras. However these experiments were difficult to interpret due to viability problems and because I found an unexpected defect in the ability of Trem-1-/- BM to generate all DC, irrespective of whether they expressed Trem-1 or not. 20 The final experiments I carried out were to examine the role of the microbiota in driving the differentiation of intestinal DC subsets, based on the hypothesis that this could be one of the environmental factors that might influence events in the developing intestine. To this end I performed experiments in both antibiotic treated and germ free adult mice, both of which showed no significant phenotypic differences amongst any of the DC subsets. However the study of germ free mice was compromised by recent contamination of the colony and may not be the conclusive answer. Together the data in this thesis have shown that the population of CD103+CD11b+ DC, which is unique to the intestine, is not present at birth. These cells gradually increase in frequency over time and as this occurs there is a reciprocal decrease in the frequency of CD103-CD11b+ DC. Along with other results, this leads to the idea that there may be a linear developmental pathway from CD103-CD11b+ DC to CD103+CD11b+ DC that is driven by non-microbial factors that are located preferentially in the small intestine. My project indicates that markers such as CD101 and Trem-1 may assist the dissection of this process and highlights the importance of the neonatal period for these events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For decades, global climate change has directly and indirectly affected the structure and function of ecosystems. Abrupt changes in biodiversity have been observed in response to linear or sudden modifications to the environment. These abrupt shifts can cause long-term reorganizations within ecosystems, with communities exhibiting new functional responses to environmental factors. Over the last 3 decades, the Gironde estuary in southwest France has experienced 2 abrupt shifts in both the physical and chemical environments and the pelagic community. Rather than describing these shifts and their origins, we focused on the 3 inter-shift periods, describing the structure of the fish community and its relationship with the environment during these periods. We described fish biodiversity using a limited set of descriptors, taking into account both species composition and relative species abundances. Inter-shift ecosystem states were defined based on the relationship between this description and the hydro-physico-chemical variables and climatic indices defining the main features of the environment. This relationship was described using generalized linear mixed models on the entire time series and for each inter-shift period. Our results indicate that (1) the fish community structure has been significantly modified, (2) environmental drivers influencing fish diversity have changed during these 3 periods, and (3) the fish-environment relationships have been modified over time. From this, we conclude a regime shift has occurred in the Gironde estuary. We also highlight that anthropogenic influences have increased, which re-emphasizes the importance of local management in maintaining fish diversity and associated goods and services within the context of climate change.