975 resultados para Engineers.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low cycle fatigue cracking of light gauge metal roofing was investigated by testing a number of two-span corrugated roofing assemblies with different spans and fastening systems under cyclic uplift wind loading. Fatigue results correlated quite well with the corresponding static results reported earlier, and revealed the dependence of fatigue behaviour on the fastening system used. A comparison was made of one fastening system with the other regarding fatigue performance .

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-wind events such as storms and hurricanes cause severe damage to low-rise building (housing, schools, and industrial, commercial, and farm buildings). Roof claddings often suffer the worst, which then leads to accelerated damage to the whole building. Australia leads the way in solving this international problem through extensive research and development work, and has adequate documents in place. This paper first illustrates briefly the nature of high-wind events and then the commonly observed damage to buildings. Australian research work and design practice are then described, based on which suitable design recommendations for wind-resistant buildings are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new cold-formed and resistance-welded section known as the hollow flange beam (HFB) has been developed recently in Australia. In contrast to the common lateral-torsional buckling mode of I-beams, this unique section comprising two stiff triangular flanges and a slender web is susceptible to a lateral-distortional buckling mode of failure involving lateral deflection, twist, and cross-section change due to web distortion. This lateral-distortional buckling behavior has been shown to cause significant reduction of the available flexural capacity of HFBs. An investigation using finite-element analyses and large-scale experiments was carried out into the use of transverse web plate stiffeners to improve the lateral buckling capacity of HFBs. This paper presents the details of the finite-element model and analytical results. The experimental procedure and results are outlined in a companion paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pull-through/local dimpling failure strength of screwed connections is very important in the design of profiled steel cladding systems to help them resist storms and hurricanes. The current American and European provisions recommend four different test methods for the screwed connections in tension, but the accuracy of these methods in determining the connection strength is not known. It is unlikely that the four test methods are equivalent in all cases and thus it is necessary to reduce the number of methods recommended. This paper presents a review of these test methods based on some laboratory tests on crest- and valley-fixed claddings and then recommends alternative tests methods that reproduce the real behavior of the connections, including the bending and membrane deformations of the cladding around the screw fasteners and the tension load in the fastener.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hollow flange beam (HFB) is a new cold-formed and resistance-welded section developed in Australia. Due to its unique geometry comprising two stiff triangular flanges and a slender web, the HFB is susceptible to a lateral-distortional buckling mode of failure involving web distortion. Investigation using finite-element analyses showed that the use of transverse web plate stiffeners effectively eliminated lateral-distortional buckling of HFBs and thus any associated reduction in flexural capacity. A detailed experimental investigation was then carried out to validate the results from the finite-element analysis and to improve the stiffener configuration further. This led to the development of a special stiffener that is screw-fastened to the flanges on alternate sides of the web. This paper presents the details of the experimental investigations, the results, and the final stiffener arrangement whereas the details of the finite-element analyses are presented in a companion paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When steel roof and wall cladding systems are subjected to wind uplift/suction forces, local pull-through/dimpling failures or pull-out failures occur prematurely at their screwed connections. During extreme wind events such as storms and hurricanes, these localized failures then lead to severe damage to buildings and their contents. An investigation was therefore carried out to study the failure that occurs when the screw fastener pulls out of the steel battens, purlins, or girts. Both two-span cladding tests and small-scale tests were conducted using a range of commonly used screw fasteners and steel battens, purlins, and girts. Experimental results showed that the current design formula may not be suitable unless a reduced capacity factor of 0.4 is used. Therefore, an improved design formula has been developed for pull-out failures in steel cladding systems. The formula takes into account thickness and ultimate tensile strength of steel, along with thread diameter and the pitch of screw fasteners, in order to model the pull-out behavior more accurately. This paper presents the details of this experimental investigation and its results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The realistic strength and deflection behavior of industrial and commercial steel portal frame buildings are understood only if the effects of rigidity of end frames and profiled steel claddings are included. The conventional designs ignore these effects and are very much based on idealized two-dimensional (2D) frame behavior. Full-scale tests of a 1212 m steel portal frame building under a range of design load cases indicated that the observed deflections and bending moments in the portal frame were considerably different from those obtained from a 2D analysis of frames ignoring these effects. Three-dimensional (3D) analyses of the same building, including the effects of end frames and cladding, were carried out, and the results agreed well with full-scale test results. Results clearly indicated the need for such an analysis and for testing to study the true behavior of steel portal frame buildings. It is expected that such a 3D analysis will lead to lighter steel frames as the maximum moments and deflections are reduced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The IEC 61850 family of standards for substation communication systems were released in the early 2000s, and include IEC 61850-8-1 and IEC 61850-9-2 that enable Ethernet to be used for process-level connections between transmission substation switchyards and control rooms. This paper presents an investigation of process bus protection performance, as the in-service behavior of multi-function process buses is largely unknown. An experimental approach was adopted that used a Real Time Digital Simulator and 'live' substation automation devices. The effect of sampling synchronization error and network traffic on transformer differential protection performance was assessed and compared to conventional hard-wired connections. Ethernet was used for all sampled value measurements, circuit breaker tripping, transformer tap-changer position reports and Precision Time Protocol synchronization of sampled value merging unit sampling. Test results showed that the protection relay under investigation operated correctly with process bus network traffic approaching 100% capacity. The protection system was not adversely affected by synchronizing errors significantly larger than the standards permit, suggesting these requirements may be overly conservative. This 'closed loop' approach, using substation automation hardware, validated the operation of protection relays under extreme conditions. Digital connections using a single shared Ethernet network outperformed conventional hard-wired solutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Today, the majority of semiconductor fabrication plants (fabs) conduct equipment preventive maintenance based on statistically-derived time- or wafer-count-based intervals. While these practices have had relative success in managing equipment availability and product yield, the cost, both in time and materials, remains high. Condition-based maintenance has been successfully adopted in several industries, where costs associated with equipment downtime range from potential loss of life to unacceptable affects to companies’ bottom lines. In this paper, we present a method for the monitoring of complex systems in the presence of multiple operating regimes. In addition, the new representation of degradation processes will be used to define an optimization procedure that facilitates concurrent maintenance and operational decision-making in a manufacturing system. This decision-making procedure metaheuristically maximizes a customizable cost function that reflects the benefits of production uptime, and the losses incurred due to deficient quality and downtime. The new degradation monitoring method is illustrated through the monitoring of a deposition tool operating over a prolonged period of time in a major fab, while the operational decision-making is demonstrated using simulated operation of a generic cluster tool.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Upgrading old buildings with the evolution of building requirements, this project investigates new approaches that can be applied to strengthen our own heritage buildings using historical and comparative analysis of heritage building restorations locally and abroad. Within the newly developing field of Heritage Engineering, it evaluates the innovative Concrete Overlay technique adapted to building restoration of the Brisbane City Hall. This study aims to extend the application of Concrete Overlay techniques and determine its compatibility specifically to heritage buildings. Concrete overlay involves drilling new reinforcement and placing concrete on top of the existing structure. It is akin to a bone transplant or bone grafting in the case of a human being and has been used by engineers to strengthen newer bridges.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to establish the influence of the drying air characteristics on the drying performance and fluidization quality of bovine intestine for pet food, several drying tests have been carried out in a laboratory scale heat pump assisted fluid bed dryer. Bovine intestine samples were heat pump fluidized bed dried at atmospheric pressure and at temperatures below and above the materials freezing points, equipped with a continuous monitoring system. The investigation of the drying characteristics have been conducted in the temperature range −10 to 25 ◦C and the airflow in the range 1.5–2.5 m/s. Some experiments were conducted as single temperature drying experiments and others as two stage drying experiments employing two temperatures. An Arrhenius-type equation was used to interpret the influence of the drying air temperature on the effective diffusivity, calculated with the method of slopes in terms of energy activation, and this was found to be sensitive to the temperature. The effective diffusion coefficient of moisture transfer was determined by the Fickian method using uni-dimensional moisture movement in both moisture, removal by evaporation and combined sublimation and evaporation. Correlations expressing the effective moisture diffusivity and drying temperature are reported. Bovine particles were characterized according to the Geldart classification and the minimum fluidization velocity was calculated using the Ergun Equation and generalized equation for all drying conditions at the beginning and end of the trials. Walli’s model was used to categorize stability of the fluidization at the beginning and end of the dryingv for each trial. The determined Walli’s values were positive at the beginning and end of all trials indicating stable fluidization at the beginning and end for each drying condition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In many bridges, vertical displacements are one of the most relevant parameters for structural health monitoring in both the short- and long-terms. Bridge managers around the globe are always looking for a simple way to measure vertical displacements of bridges. However, it is difficult to carry out such measurements. On the other hand, in recent years, with the advancement of fibre-optic technologies, fibre Bragg grating (FBG) sensors are more commonly used in structural health monitoring due to their outstanding advantages including multiplexing capability, immunity of electromagnetic interference as well as high resolution and accuracy. For these reasons, a methodology for measuring the vertical displacements of bridges using FBG sensors is proposed. The methodology includes two approaches. One of which is based on curvature measurements while the other utilises inclination measurements from successfully developed FBG tilt sensors. A series of simulation tests of a full-scale bridge was conducted. It shows that both approaches can be implemented to measure the vertical displacements for bridges with various support conditions, varying stiffness along the spans and without any prior known loading. A static loading beam test with increasing loads at the mid-span and a beam test with different loading locations were conducted to measure vertical displacements using FBG strain sensors and tilt sensors. The results show that the approaches can successfully measure vertical displacements.