980 resultados para Energy levels (Quantum mechanics)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work we report theoretical Stark widths and shifts calculated using the Griem semi-empirical approach, corresponding to 237 spectral lines of MgIII. Data are presented for an electron density of 1017 cm?3 and temperatures T = 0.5?10.0 (104 K). The matrix elements used in these calculations have been determined from 23 configurations of MgIII: 2s22p6, 2s22p53p, 2s22p54p, 2s22p54f and 2s22p55f for even parity and 2s22p5ns (n = 3?6), 2s22p5nd (n = 3?9), 2s22p55g and 2s2p6np (n = 3?8) for odd parity. For the intermediate coupling (IC) calculations, we use the standard method of least-squares fitting from experimental energy levels by means of the Cowan computer code. Also, in order to test the matrix elements used in our calculations, we present calculated values of 70 transition probabilities of MgIII spectral lines and 14 calculated values of radiative lifetimes of MgIII levels. There is good agreement between our calculations and experimental radiative lifetimes. Spectral lines of MgIII are relevant in astrophysics and also play an important role in the spectral analysis of laboratory plasma. Theoretical trends of the Stark broadening parameter versus the temperature for relevant lines are presented. No values of Stark parameters can be found in the bibliography.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary electron donor in bacterial reaction centers is a dimer of bacteriochlorophyll a molecules, labeled L or M based on their proximity to the symmetry-related protein subunits. The electronic structure of the bacteriochlorophyll dimer was probed by introducing small systematic variations in the bacteriochlorophyll–protein interactions by a series of site-directed mutations that replaced residue Leu M160 with histidine, tyrosine, glutamic acid, glutamine, aspartic acid, asparagine, lysine, and serine. The midpoint potentials for oxidation of the dimer in the mutants showed an almost continuous increase up to ≈60 mV compared with wild type. The spin density distribution of the unpaired electron in the cation radical state of the dimer was determined by electron–nuclear–nuclear triple resonance spectroscopy in solution. The ratio of the spin density on the L side of the dimer to the M side varied from ≈2:1 to ≈5:1 in the mutants compared with ≈2:1 for wild type. The correlation between the midpoint potential and spin density distribution was described using a simple molecular orbital model, in which the major effect of the mutations is assumed to be a change in the energy of the M half of the dimer, providing estimates for the coupling and energy levels of the orbitals in the dimer. These results demonstrate that the midpoint potential can be fine-tuned by electrostatic interactions with amino acids near the dimer and show that the properties of the electronic structure of a donor or acceptor in a protein complex can be directly related to functional properties such as the oxidation–reduction midpoint potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over four hundred years ago, Sir Walter Raleigh asked his mathematical assistant to find formulas for the number of cannonballs in regularly stacked piles. These investigations aroused the curiosity of the astronomer Johannes Kepler and led to a problem that has gone centuries without a solution: why is the familiar cannonball stack the most efficient arrangement possible? Here we discuss the solution that Hales found in 1998. Almost every part of the 282-page proof relies on long computer verifications. Random matrix theory was developed by physicists to describe the spectra of complex nuclei. In particular, the statistical fluctuations of the eigenvalues (“the energy levels”) follow certain universal laws based on symmetry types. We describe these and then discuss the remarkable appearance of these laws for zeros of the Riemann zeta function (which is the generating function for prime numbers and is the last special function from the last century that is not understood today.) Explaining this phenomenon is a central problem. These topics are distinct, so we present them separately with their own introductory remarks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum mechanics associate to some symplectic manifolds M a quantum model Q(M), which is a Hilbert space. The space Q(M) is the quantum mechanical analogue of the classical phase space M. We discuss here relations between the volume of M and the dimension of the vector space Q(M). Analogues for convex polyhedra are considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Foi proposta uma experiência na qual seria possível produzir um emaranhamento quântico de feixes de fótons com diferentes frequências, movendo-se em uma mesma direção, controlado por meio de um campo magnético externo. Nessa experiência, a interação entre o campo magnético e fótons é realizada por intermédio de elétrons, que interagem tanto com os fótons quanto com o campo magnético externo. Foi desenvolvida uma teoria que descreve processos físicos. Derivamos medidas de emaranhamento de informação e de Schmidt para um sistema geral de dois qubits e a medida residual para um sistema geral de três qubits. Usando a informação obtida da análise dos sistemas de dois e de três quase-fótons, calculamos medidas de emaranhamento. Criamos um programa para cálculo numérico, nesses casos, através do qual construímos gráficos de dependência das medidas de emaranhamentos em feixes de dois e de três fótons. Os resultados obtidos nos permitem ver como a medida de emaranhamento depende dos parâmetros, que caracterizam o sistema em questão. Por exemplo, se ambas as polarizações dos fótons coincidem, então, nenhum emaranhamento ocorre. O emaranhamento acontece apenas se as polarizações do fóton forem opostas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the influence of carbon-, sulfur-, and phosphorus-based charge transfer reactions on the emission signal of 34 elements (Ag, Al, As, Au, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, I, In, Ir, K, Li, Mg, Mn, Na, Ni, P, Pb, Pd, Pt, S, Sb, Se, Sr, Te, and Zn) in axially viewed inductively coupled plasma–atomic emission spectrometry has been investigated. To this end, atomic and ionic emission signals for diluted glycerol, sulfuric acid, and phosphoric acid solutions were registered and results were compared to those obtained for a 1% w w− 1 nitric acid solution. Experimental results show that the emission intensities of As, Se, and Te atomic lines are enhanced by charge transfer from carbon, sulfur, and phosphorus ions. Iodine and P atomic emission is enhanced by carbon- and sulfur-based charge transfer whereas the Hg atomic emission signal is enhanced only by carbon. Though signal enhancement due to charge transfer reactions is also expected for ionic emission lines of the above-mentioned elements, no experimental evidence has been found with the exception of Hg ionic lines operating carbon solutions. The effect of carbon, sulfur, and phosphorus charge transfer reactions on atomic emission depends on (i) wavelength characteristics. In general, signal enhancement is more pronounced for electronic transitions involving the highest upper energy levels; (ii) plasma experimental conditions. The use of robust conditions (i.e. high r.f. power and lower nebulizer gas flow rates) improves carbon, sulfur, and phosphorus ionization in the plasma and, hence, signal enhancement; and (iii) the presence of other concomitants (e.g. K or Ca). Easily ionizable elements reduce ionization in the plasma and consequently reduce signal enhancement due to charge transfer reactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The SnRK1 protein kinase balances cellular energy levels in accordance with extracellular conditions and is thereby key for plant stress tolerance. In addition, SnRK1 has been implicated in numerous growth and developmental processes from seed filling and maturation to flowering and senescence. Despite its importance, the mechanisms that regulate SnRK1 activity are poorly understood. Here, we demonstrate that the SnRK1 complex is SUMOylated on multiple subunits and identify SIZ1 as the E3 Small Ubiquitin-like Modifier (SUMO) ligase responsible for this modification. We further show that SnRK1 is ubiquitinated in a SIZ1-dependent manner, causing its degradation through the proteasome. In consequence, SnRK1 degradation is deficient in siz1-2 mutants, leading to its accumulation and hyperactivation of SnRK1 signaling. Finally, SnRK1 degradation is strictly dependent on its activity, as inactive SnRK1 variants are aberrantly stable but recover normal degradation when expressed as SUMO mimetics. Altogether, our data suggest that active SnRK1 triggers its own SUMOylation and degradation, establishing a negative feedback loop that attenuates SnRK1 signaling and prevents detrimental hyperactivation of stress responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

v. 1. Molecular quantum mechanics and molecular electronic spectroscopy: early workers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A central feature in the Hilbert space formulation of classical mechanics is the quantisation of classical Lionville densities, leading to what may be termed Groenewold operators. We investigate the spectra of the Groenewold operators that correspond to Gaussian and to certain uniform Lionville densities. We show that when the classical coordinate-momentum uncertainty product falls below Heisenberg's limit, the Groenewold operators in the Gaussian case develop negative eigenvalues and eigenvalues larger than 1. However, in the uniform case, negative eigenvalues are shown to persist for arbitrarily large values of the classical uncertainty product.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measuring the polarization of a single photon typically results in its destruction. We propose, demonstrate, and completely characterize a quantum nondemolition (QND) scheme for realizing such a measurement nondestructively. This scheme uses only linear optics and photodetection of ancillary modes to induce a strong nonlinearity at the single-photon level, nondeterministically. We vary this QND measurement continuously into the weak regime and use it to perform a nondestructive test of complementarity in quantum mechanics. Our scheme realizes the most advanced general measurement of a qubit to date: it is nondestructive, can be made in any basis, and with arbitrary strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comprehensive study has been conducted to compare the adsorptions of alkali metals (including Li, Na, and K) on the basal plane of graphite by using molecular orbital theory calculations. All three metal atoms prefer to be adsorbed on the middle hollow site above a hexagonal aromatic ring. A novel phenomenon was observed, that is, Na, instead of Li or K, is the weakest among the three types of metal atoms in adsorption. The reason is that the SOMO (single occupied molecular orbital) of the Na atom is exactly at the middle point between the HOMO and the LUMO of the graphite layer in energy level. As a result, the SOMO of Na cannot form a stable interaction with either the HOMO or the LUMO of the graphite. On the other hand, the SOMO of Li and K can form a relatively stable interaction with either the HOMO or the LUMO of graphite. Why Li has a relatively stronger adsorption than K on graphite has also been interpreted on the basis of their molecular-orbital energy levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Einstein-Podolsky-Rosen paradox and quantum entanglement are at the heart of quantum mechanics. Here we show that single-pass traveling-wave second-harmonic generation can be used to demonstrate both entanglement and the paradox with continuous variables that are analogous to the position and momentum of the original proposal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop an all-optical scheme to generate superpositions of macroscopically distinguishable coherent states in traveling optical fields. It nondeterministically distills coherent-state superpositions (CSS's) with large amplitudes out of CSS's with small amplitudes using inefficient photon detection. The small CSS's required to produce CSS's with larger amplitudes are extremely well approximated by squeezed single photons. We discuss some remarkable features of this scheme: it effectively purifies mixed initial states emitted from inefficient single-photon sources and boosts negativity of Wigner functions of quantum states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the nonclassicality of a photon-subtracted Gaussian field, which was produced in a recent experiment, using negativity of the Wigner function and the nonexistence of well-behaved positive P function. We obtain the condition to see negativity of the Wigner function for the case including the mixed Gaussian incoming field, the threshold photodetection and the inefficient homodyne measurement. We show how similar the photon-subtracted state is to a superposition of coherent states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wigner functions play a central role in the phase space formulation of quantum mechanics. Although closely related to classical Liouville densities, Wigner functions are not positive definite and may take negative values on subregions of phase space. We investigate the accumulation of these negative values by studying bounds on the integral of an arbitrary Wigner function over noncompact subregions of the phase plane with hyperbolic boundaries. We show using symmetry techniques that this problem reduces to computing the bounds on the spectrum associated with an exactly solvable eigenvalue problem and that the bounds differ from those on classical Liouville distributions. In particular, we show that the total "quasiprobability" on such a region can be greater than 1 or less than zero. (C) 2005 American Institute of Physics.