982 resultados para Emissão de CO2
Resumo:
Background If biofuels are to be a viable substitute for fossil fuels, it is essential that they retain their potential to mitigate climate change under future atmospheric conditions. Elevated atmospheric CO2 concentration [CO2] stimulates plant biomass production; however, the beneficial effects of increased production may be offset by higher energy costs in crop management. Methodology/Main findings We maintained full size poplar short rotation coppice (SRC) systems under both current ambient and future elevated [CO2] (550 ppm) and estimated their net energy and greenhouse gas balance. We show that a poplar SRC system is energy efficient and produces more energy than required for coppice management. Even more, elevated [CO2] will increase the net energy production and greenhouse gas balance of a SRC system with 18%. Managing the trees in shorter rotation cycles (i.e. 2 year cycles instead of 3 year cycles) will further enhance the benefits from elevated [CO2] on both the net energy and greenhouse gas balance. Conclusions/significance Adapting coppice management to the future atmospheric [CO2] is necessary to fully benefit from the climate mitigation potential of bio-energy systems. Further, a future increase in potential biomass production due to elevated [CO2] outweighs the increased production costs resulting in a northward extension of the area where SRC is greenhouse gas neutral. Currently, the main part of the European terrestrial carbon sink is found in forest biomass and attributed to harvesting less than the annual growth in wood. Because SRC is intensively managed, with a higher turnover in wood production than conventional forest, northward expansion of SRC is likely to erode the European terrestrial carbon sink.
Resumo:
We report the results of a study investigating the influence of elevated CO2 on species interactions across three trophic levels: a plant (Brassica oleracea), two aphid herbivores (the generalist Myzus persicae and the specialist Brevicoryne brassicae), and two natural enemies (the coccinellid Hippodamia convergens (ladybird) and the parasitoid wasp Diaeretiella rapae). Brassica oleracea plants reared under elevated CO2 conditions (650 ppmv vs. 350 ppmv) were larger and had decreased water and nitrogen content. Brevicoryne brassicae reared on plants grown in elevated CO2 were larger and accumulated more fat, while there was no change in M. persicae traits. Fecundity of individual aphids appeared to be increased when reared on plants grown in elevated CO2. However, these differences were generally lost when aphids were reared in colonies, suggesting that such changes in plant quality will have subtile effects on aphid intraspecific interactions. Nevertheless, CO2 treatment did influence aphid distribution on plants, with significantly fewer M. persicae found on the shoots, and B. brassicae was only found on senescing leaves, when colonies were reared on plants grown in elevated CO2. We reared B. brassicae and M. persicae in competition on plants grown at both the CO2 concentration treatments. We found a significantly lower ratio of M. persicae: B. brassicae on plants grown under elevated CO2 conditions, strongly suggesting that increasing CO2 concentrations can alter the outcome of competition among insect herbivores. This was also reflected in the distribution of the aphids on the plants. While the CO2 treatment did not influence where B. brassicae were found, fewer M. persicae were present on senescing leaves under elevated CO2 conditions. Changes in plant quality resulting from the CO2 treatments did not appear to alter aphid quality as prey species, as the number consumed by the ladybird H. convergens, and the number parasitised by the parasitoid wasp D. rapae, did not change. To our knowledge, this study provides the first empirical evidence that changes in host plant quality mediated by increasing levels of CO2 can alter the outcome of interspecific competition among insect herbivores.
Resumo:
An idealized equilibrium model for the undisturbed partly cloudy boundary layer (BL) is used as a framework to explore the coupling of the energy, water, and carbon cycles over land in midlatitudes and show the sensitivity to the clear‐sky shortwave flux, the midtropospheric temperature, moisture, CO2, and subsidence. The changes in the surface fluxes, the BL equilibrium, and cloud cover are shown for a warmer, doubled CO2 climate. Reduced stomatal conductance in a simple vegetation model amplifies the background 2 K ocean temperature rise to an (unrealistically large) 6 K increase in near‐surface temperature over land, with a corresponding drop of near‐surface relative humidity of about 19%, and a rise of cloud base of about 70 hPa. Cloud changes depend strongly on changes of mean subsidence; but evaporative fraction (EF) decreases. EF is almost uniquely related to mixed layer (ML) depth, independent of background forcing climate. This suggests that it might be possible to infer EF for heterogeneous landscapes from ML depth. The asymmetry of increased evaporation over the oceans and reduced transpiration over land increases in a warmer doubled CO2 climate.
Resumo:
Atmosphere–ocean general circulation models (AOGCMs) predict a weakening of the Atlantic meridional overturning circulation (AMOC) in response to anthropogenic forcing of climate, but there is a large model uncertainty in the magnitude of the predicted change. The weakening of the AMOC is generally understood to be the result of increased buoyancy input to the north Atlantic in a warmer climate, leading to reduced convection and deep water formation. Consistent with this idea, model analyses have shown empirical relationships between the AMOC and the meridional density gradient, but this link is not direct because the large-scale ocean circulation is essentially geostrophic, making currents and pressure gradients orthogonal. Analysis of the budget of kinetic energy (KE) instead of momentum has the advantage of excluding the dominant geostrophic balance. Diagnosis of the KE balance of the HadCM3 AOGCM and its low-resolution version FAMOUS shows that KE is supplied to the ocean by the wind and dissipated by viscous forces in the global mean of the steady-state control climate, and the circulation does work against the pressure-gradient force, mainly in the Southern Ocean. In the Atlantic Ocean, however, the pressure-gradient force does work on the circulation, especially in the high-latitude regions of deep water formation. During CO2-forced climate change, we demonstrate a very good temporal correlation between the AMOC strength and the rate of KE generation by the pressure-gradient force in 50–70°N of the Atlantic Ocean in each of nine contemporary AOGCMs, supporting a buoyancy-driven interpretation of AMOC changes. To account for this, we describe a conceptual model, which offers an explanation of why AOGCMs with stronger overturning in the control climate tend to have a larger weakening under CO2 increase.
Resumo:
Through increases in net primary production (NPP), elevated CO2 is hypothesizes to increase the amount of plant litter entering the soil. The fate of this extra carbon on the forest floor or in mineral soil is currently not clear. Moreover, increased rates of NPP can be maintained only if forests can escape nitrogen limitation. In a Free atmospheric CO2 Enrichment (FACE) experiment near Bangor, Wales, 4 ambient CO2 and 4 FACE plots were planted with patches of Betula pendula, Alnus glutinosa and Fagus sylvatica on a former arable field. Four years after establishment, only a shallow L forest floor litter layer had formed due to intensive bioturbation. Total soil C and N contents increased irrespective of treatment and species as a result of afforestation. We could not detect an additional C sink in the soil, nor were soil C stabilization processes affected by FACE. We observed a decrease of leaf N content in Betula and Alnus under FACE, while the soil C/N ratio decreased regardless of CO2 treatment. The ratio of N taken up from the soil and by N2-fixation in Alnus was not affected by FACE. We infer that increased nitrogen use efficiency is the mechanism by which increased NPP is sustained under elevated CO2 at this site.
Resumo:
1. Closed Ecological Systems (CES) are small manmade ecosystems which do not have any material exchange with the surrounding environment. Recent ecological and technological advances enable successful establishment and maintenance of CES, making them a suitable tool for detecting and measuring subtle feedbacks and mechanisms. 2. As a part of an analogue (physical) C cycle modelling experiment, we developed a non-intrusive methodology to control the internal environment and to monitor atmospheric CO2 concentration inside 16 replicated CES. Whilst maintaining an air-tight seal of all CES, this approach allowed for access to the CO2 measuring equipment for periodic re-calibration and repairs. 3. To ensure reliable cross-comparison of CO2 observations between individual CES units and to minimise the cost of the system, only one CO2 sampling unit was used. An ADC BioScientific OP-2 (open-path) analyser mounted on a swinging arm was passing over a set of 16 measuring cells. Each cell was connected to an individual CES with air continuously circulating between them. 4. Using this setup, we were able to continuously measure several environmental variables and CO2 concentration within each closed system, allowing us to study minute effects of changing temperature on C fluxes within each CES. The CES and the measuring cells showed minimal air leakage during an experimental run lasting, on average, 3 months. The CO2 analyser assembly performed reliably for over 2 years, however an early iteration of the present design proved to be sensitive to positioning errors. 5. We indicate how the methodology can be further improved and suggest possible avenues where future CES based research could be applied.
Resumo:
Current forest Free Air CO2 Enrichment (FACE) experiments are reaching completion. Therefore, it is time to define the scientific goals and priorities of future experimental facilities. In this opinion article, we discuss the following three overarching issues (i) What are the most urgent scientific questions and how can they be addressed? (ii) What forest ecosystems should be investigated? (iii) Which other climate change factors should be coupled with elevated CO2 concentrations in future experiments to better predict the effects of climate change? Plantations and natural forests can have conflicting purposes for high productivity and environmental protection. However, in both cases the assessment of carbon balance and how this will be affected by elevated CO2 concentrations and the interacting climate change factors is the most pressing priority for future experiments.
Resumo:
A time-dependent climate-change experiment with a coupled ocean–atmosphere general circulation model has been used to study changes in the occurrence of drought in summer in southern Europe and central North America. In both regions, precipitation and soil moisture are reduced in a climate of greater atmospheric carbon dioxide. A detailed investigation of the hydrology of the model shows that the drying of the soil comes about through an increase in evaporation in winter and spring, caused by higher temperatures and reduced snow cover, and a decrease in the net input of water in summer. Evaporation is reduced in summer because of the drier soil, but the reduction in precipitation is larger. Three extreme statistics are used to define drought, namely the frequency of low summer precipitation, the occurrence of long dry spells, and the probability of dry soil. The last of these is arguably of the greatest practical importance, but since it is based on soil moisture, of which there are very few observations, the authors’ simulation of it has the least confidence. Furthermore, long time series for daily observed precipitation are not readily available from a sufficient number of stations to enable a thorough evaluation of the model simulation, especially for the frequency of long dry spells, and this increases the systematic uncertainty of the model predictions. All three drought statistics show marked increases owing to the sensitivity of extreme statistics to changes in their distributions. However, the greater likelihood of long dry spells is caused by a tendency in the character of daily rainfall toward fewer events, rather than by the reduction in mean precipitation. The results should not be taken as firm predictions because extreme statistics for small regions cannot be calculated reliably from the output of the current generation of GCMs, but they point to the possibility of large increases in the severity of drought conditions as a consequence of climate change caused by increased CO2.
Resumo:
Coupled atmosphere‐ocean general circulation models have a tendency to drift away from a realistic climatology. The modelled climate response to an increase of CO2 concentration may be incorrect if the simulation of the current climate has significant errors, so in many models, including ours, the drift is counteracted by applying prescribed fluxes of heat and fresh water at the ocean‐atmosphere interface in addition to the calculated surface exchanges. Since the additional fluxes do not have a physical basis, the use of this technique of “flux adjustment” itself introduces some uncertainty in the simulated response to increased CO2. We find that the global‐average temperature response of our model to CO2 increasing at 1% per year is about 30% less without flux adjustment than with flux adjustment. The geographical patterns of the response are similar, indicating that flux adjustment is not causing any gross distortion. The reduced size of the response is due to more effective vertical transport of heat into the ocean, and a somewhat smaller climate sensitivity. Although the response in both cases lies within the generally accepted range for the climate sensitivity, systematic uncertainties of this size are clearly undesirable, and the best strategy for future development is to improve the climate model in order to reduce the need for flux adjustment.
Resumo:
Subantarctic mode water (SAMW) has been shown to be a good indicator of anthropogenic climate change in coupled climate models. SAMW in a coupled climate model and the response of modeled SAMW to increasing CO2 are examined in detail. How SAMW adjusts from climatological values toward a new equilibrium in the coupled model, with different climatological temperature and salinity properties, is shown. The combined formation rate of SAMW and Antarctic intermediate water is calculated as approximately 18 Sv (Sv ≡ 106 m3 s−1) in the Indian sector of the Southern Ocean, slightly lower than climatological values would suggest. When forced with increasing CO2, SAMW is produced at a similar rate but at lower densities. This result suggests that the rate of heat uptake in this part of the ocean will be unchanged by anthropogenic forcing. The important signal in the response of SAMW is the shift to colder and fresher values on isopycnals that is believed to be related to changes in thermodynamic surface forcing. It is shown that, given uniform forcing, SAMW is expected to enhance the signal relative to other water masses. Independent increases in surface heating or freshwater forcing can produce changes similar to those observed, but the two different types of forcing are distinguishable using separate forcing experiments, hodographs, and passive anomaly tracers. The changes in SAMW forced by increasing CO2 are dominated by surface heating, but changes to freshwater fluxes are also important.
Resumo:
We present the results of a systematic study of the influence of carbon surface oxidation on Dubinin–Astakhov isotherm parameters obtained from the fitting of CO2 adsorption data. Using GCMC simulations of adsorption on realistic VPC models differing in porosity and containing the most frequently occurring carbon surface functionalities (carboxyls, hydroxyls and carbonyls) and their mixtures, it is concluded that the maximum adsorption calculated from the DA model is not strongly affected by the presence of oxygen groups. Unfortunately, the same cannot be said of the remaining two parameters of this model i.e. the heterogeneity parameter (n) and the characteristic energy of adsorption (E0). Since from the latter the pore diameters of carbons are usually calculated, by inverse-type relationships, it is concluded that they are questionable for carbons containing surface oxides, especially carboxyls.
Resumo:
This paper investigates the extent to which office activity contributes to travel-related CO2 emission. Using ‘end-user’ figures[1], travel accounts for 32% of UK CO2 emission (Commission for Integrated Transport, 2007) and commuting and business travel accounts for a fifth of transport-related CO2 emissions, equating to 6.4% of total UK emissions (Building Research Establishment, 2000). Figures from the Department for Transport (2006) report that 70% of commuting trips were made by car, accounting for 73% of all commuting miles travelled. In assessing the environmental performance of an office building, the paper questions whether commuting and business travel-related CO2 emission is being properly assessed. For example, are office buildings in locations that are easily accessible by public transport being sufficiently rewarded? The de facto method for assessing the environmental performance of office buildings in the UK is the Building Research Establishment’s Environmental Assessment Method (BREEAM). Using data for Bristol, this paper examines firstly whether BREEAM places sufficient weight on travel-related CO2 emission in comparison with building operation-related CO2 emission, and secondly whether the methodology for assigning credits for travel-related CO2 emission efficiency is capable of discerning intra-urban differences in location such as city centre and out-of-town. The results show that, despite CO2 emission per worker from building operation and travel being comparable, there is a substantial difference in the credit-weighting allocated to each. Under the current version of BREEAM for offices, only a maximum of 4% of the available credits can be awarded for ensuring the office location is environmentally sustainable. The results also show that all locations within the established city centre of Bristol will receive maximum BREEAM credits. Given the parameters of the test there is little to distinguish one city centre location from another and out of town only one office location receives any credits. It would appear from these results that the assessment method is not able to discern subtle differences in the sustainability of office locations
Resumo:
The potential interactive effects of future atmospheric CO2 concentrations and plant diversity loss on the functioning of belowground systems are still poorly understood. Using a microcosm greenhouse approach with assembled grassland plant communities of different diversity (1, 4 and 8 species), we explored the interactive effects between plant species richness and elevated CO2 (ambient and + 200 p.p.m.v. CO2) on earthworms and microbial biomass. We hypothesised that the beneficial effect of increasing plant species richness on earthworm performance and microbial biomass will be modified by elevated CO2 through impacts on belowground organic matter inputs, soil water availability and nitrogen availability. We found higher earthworm biomass in eight species mixtures under elevated CO2, and higher microbial biomass under elevated CO2 in four and eight species mixtures if earthworms were present. The results suggest that plant driven changes in belowground organic matter inputs, soil water availability and nitrogen availability explain the interactive effects of CO2 and plant diversity on the belowground compartment. The interacting mechanisms by which elevated CO2 modified the impact of plant diversity on earthworms and microorganisms are discussed.