982 resultados para Electron microscopy (TEM and SEM)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of additions of 1.3, 2.5, 3.8, 5.1, and 6.3 at.% Ag on the aging behavior of the Cu-10.4at.%Al alloy was studied using microhardness measurements, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis. The results indicated that with silver additions it is possible to obtain a response to age hardening, and that for large aging times there is a decrease in the alloy hardness, with a process that leads to Ag and Al segregation. © 1998 Elsevier Science S.A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polycrystalline SrBi2Nb2O9-layered ferroelectric thin films were synthesized on Pt/Ti/SiO2/Si substrate using the polymeric precursors solution. The dip-coated films were specular and crack-free and crystallized during firing at 700 °C. Single-, double-, and triple-layered films were obtained by several dips in the deposition solution, and the influence of crystallization between each dip was studied. Microstructure and morphological evaluation were followed by grazing incident x-ray diffraction (GIXRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Multilayered films obtained using the intermediate-crystallized layer route present a dense microstructure with spherical grains, with a preferential orientation in the 〈215〉 direction; films obtained using the intermediate-amorphous layer route are polycrystalline and present elongated grains around 250 nm in size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A nanoparticles of La1-xSrxMnO3 were synthesized using homogenous coprecipitation method. The precipate was washed with water and dried at 80 °C. The samples were characterized by X-ray powder diffraction, transmission electron microscopy (TEM) and electrical resistivity as a function of temperature. The TEM results show that the particle size is in the nanometer scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synthesis of SnO2 ceramic powders was made by coprecipitation method and polymeric precursor method (Pechini) to obtain Sn-Co-Nb-Ti-Al varistor systems. The particles of the obtained ceramic powder presented nanometric size and SnO2 was the principal crystalline phase in them according to X-ray diffraction results. To determine the behavior of the synthesized samples in front of the thermal treatments, thermal analysis (DTA/TG) were made. Dilatometric studies on previously pressed samples were carried out. The optimal conditions of sintering of this raw material were determined. Microstructures and electric properties of sintered samples were studied using scanning electron microscopy (SEM) and I-V characteristics curves. The samples presented varistor behavior independent of the synthesis method used, with high nonlinearity values as 32. The presence of Al3+ favored the concentration of oxygen vacancies, and the grain growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate and correlate in the rabbit the possible changes caused by mitomycin C under the scleral flap in the ciliary epithelium with transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Methods: The eyes of 32 albino rabbits were studied and divided in 4 experimental groups. The right eye (RE) was intended for the experimental groups and the left eye (LE) for the controls. Group I (G1) was formed by 8 eyes that received 0,5 mg/ml of mitomycin C under the scleral flap and were examined after 15 days. Group II (G2) differed from G1 only in the time of the exam, after 30 days. Group III (G3) was formed by 8 eyes that received 0,2 mg/ml of mitomycin C under the scleral flap and were examined after 15 days. Group IV (G4) differed from group 3 just in the time of the exam, after 30 days. In each eye the internal ciliary epithelium were examined with TEM. Results: The following changes in the internal ciliary epithelium were observed in groups G2, G3, and G4 with TEM: discontinuous and irregular basement membrane, more irregular and electron-dense nucleous, enlargement among interdigitation, edematous mitochondria and myelin figures. These alterations were not found in all the animals of the groups. Group G 1 did not present alterations. Roughness in groups G 1, G2, G3 and G4 were observed with SEM. In groups G 1 and G2 continuity solutions were also observed. Conclusion: Mitomycin C in 0,2 mg/ml and 0,5 mg/ml concentrations caused changes in the internal ciliary epithelium 15 and 30 days after, with TEM and SEM. There was no correlation between dosage, time and with TEM and SEM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Porous titanium scaffolds are promising materials for biomedical applications such as prosthetic anchors, fillers and bone reconstruction. This study evaluated the bone/titanium interface of scaffolds with interconnected pores prepared by powder metallurgy, using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Porous scaffolds and dense samples were implanted in the tibia of rabbits, which were subsequently killed 1, 4, and 8 weeks after surgery. Initial bone neoformation was observed one week after implantation. Bone ingrowth in pores and the Ca/P ratio at the interface were remarkably enhanced at 4 and 8 weeks. The results showed that the interconnected pores of the titanium scaffolds promoted bone ingrowth, which increased over time. The powder metallurgy technique thus proved effective in producing porous scaffolds and dense titanium for biomedical applications, allowing for adequate control of pore size and porosity and promoting bone ingrowth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to evaluate the effects of adding ascorbic acid to the media for in vitro culture of cattle ovarian fragments and to determine their effects on growth activation and viability of early-stage follicles. The ovarian cortex was divided into small fragments; one fragment was immediately fixed (control) and the other fragments were cultured in minimum essential medium (MEM) supplemented or not with various doses of ascorbic acid. Ovarian tissue was processed for histology, transmission electron microscopy (TEM) and immunohistochemical demonstration of proliferating cell nuclear antigen (PCNA). Compared with control fragments, the percentage of primordial follicles was reduced (p < 0.05) and the percentage of growing follicles had increased (p < 0.05) in cultured cortical fragments, independent of the tested medium or incubation time. Furthermore, compared with control tissue, culture of ovarian cortex for 8 days reduced the percentages of healthy, viable follicles (p < 0.05), but not when cultures were supplemented with 25, 50 or 100 μg/ml of ascorbic acid. Ultrastructural and immunohistochemical analysis of 8 day cultured ovarian cortical fragments, however, showed the integrity and viability of follicles only when fragments were cultured in presence of 50 μg/ml of ascorbic acid. In conclusion, this study demonstrated that addition of ascorbic acid to MEM at a concentration of 50 μg/ml not only stimulates the activation of 8 day in vitro cultured cattle primordial follicles and subsequent growth of activated follicles, but also safeguards the viability of these early-stage follicles. © 2012 Copyright Cambridge University Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal machining is the complex process due the used cutting parameters. In metal cutting process, materials of workpiece differ widely in their ability to deform plastically, to fracture and to sustain tensile stresses. Moreover, the material involved in the process has a great influence in these operations. The Ti-6Al-4V alloy is very used in the aeronautical industry, mainly in the manufacture of engines, has very important properties such the mechanical and corrosion resistance in high te mperatures. The turning of the Ti-Al-4V alloy is very difficult due the rapid tool wear. Such behavior result of the its low thermal conductivity in addition the high reactivity with the cutting tool. The formed chip is segmented and regions of the large deformation named shear bands plows formed. The machinability of the cutting process can be evaluated by several measures including power consume, machined surface quality, tool wear, tool life, microstructure and morphology of the obtained chip. This paper studies the effect of cutting parameters, speed and feed rates, in the tool wear and chip properties using uncoating cemented carbide tool. Microe-structural characterization of the chip and tool wear was performed using scanning electron microscopy (SEM) and Light Optical Mcroscopy (LOM).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composite materials made of epoxy resin and barium titanate (BT) electrospun nanostructured fibers were prepared. BT fibers were synthesized from a sol based on barium acetate, titanium isopropoxide, and poly(vinyl pyrrolidone). The fibers were heat-treated at different temperatures and characterized by X-ray diffraction, scanning electron microscopy (SEM), and Raman spectroscopy. Mats of BT fibers heat-treated at 800 C were embedded in epoxy resin into suitable molds. The composites were characterized by SEM, and dielectric measurements were performed by means of dielectric spectroscopy. The dielectric permittivity and dielectric modulus of epoxy resin/BT-fiber composites were measured for two types of samples: with the electrodes parallel and perpendicular to the BT fiber layers. Interestingly, composite samples with electrodes perpendicular to the fiber layers and a BT content as low as 2 vol % led to dielectric permittivities three times higher than that of pure epoxy resin. © 2013 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium and its alloys are widely used as biomaterials due to their mechanical, chemical and biological properties. To enhance the biocompatibility of titanium alloys, various surface treatments have been proposed. In particular, the formation of titanium oxide nanotubes layers has been extensively examined. According to the literature, it is possible to induce the growth of TiO2 on the surface of titanium, employing the aqueous anodizing electrolyte. This Ti-7.5Mo alloy was anodized in glycerol electrolytes containg 0.25 wt% of NH4F, with variations in time, voltage and calcinations temperature. After anodization, the sample surfaces were analyzed with a field emission scanning electron microscopy, DRX and contact angle measurements. It was possible to observe the formation of TiO2 on the surface and these findings represent a simple surface treatment for Ti alloys that has high potential for biomedical applications. Copyright © 2013 American Scientific Publishers. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this research report, a sintering process of porous ceramic materials based on Al2O3 was employed using a method where a cation precursor solution is embedded in an organic fibrous cotton matrix. For porous green bodies, the precursor solution and cotton were annealed at temperatures in the range of 100-1600°C using scanning electron microscopy (SEM) and thermogravimetric (TG) analysis to obtain a porous body formation and disposal process containing organic fibers and precursor solution. In a structure consisting of open pores and interconnected nanometric grains, despite the low porosity of around 40% (calculated geometrically), nitrogen physisorption determined a specific surface area of 14m2/g, which shows much sintering of porous bodies. Energy dispersive X-ray (EDX) and X-ray diffraction (XRD) analytical methods revealed a predominant amount of α-Al2O3 in the sintered samples. Thermal properties of the sintered Al2O3 fibers were obtained by using the Laser Flash which resulted in the lower thermal conductivity obtained by α-Al2O3 and therefore improved its potential use as an insulating material. © 2012 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural rubber (NR) is a renewable polymer with a wide range of applications, which is constantly tailored, further increasing its utilizations. The tensile strength is one of its most important properties susceptible of being enhanced by the simple incorporation of nanofibers. The preparation and characterization of natural-rubber based nanocomposites reinforced with bacterial cellulose (BC) and bacterial cellulose coated with polystyrene (BCPS), yielded high performance materials. The nanocomposites were prepared by a simple and green process, and characterized by tensile tests, dynamical mechanical analysis (DMA), scanning electron microscopy (SEM), and swelling experiments. The effect of the nanofiber content on morphology, static, and dynamic mechanical properties was also investigated. The results showed an increase in the mechanical properties, such as Young's modulus and tensile strength, even with modest nanofiber loadings. © 2013 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although titanium and its alloys own good mechanical properties and excellent corrosion resistance, these materials present poor tribological properties for specific applications that require wear resistance. In order to produce wear-resistant surfaces, this work is aimed at achieving improvement of wear characteristics in Ti-Si-B alloys by means of high temperature nitrogen plasma immersion ion implantation (PIII). These alloys were produced by powder metallurgy using high energy ball milling and hot pressing. Scanning electron microscopy (SEM) and X-ray diffraction identified the presence of α-titanium, Ti6Si2B, Ti5Si3, TiB and Ti3Si phases. Wear tests were carried out with a ball-on-disk tribometer to evaluate the friction coefficient and wear rate in treated and untreated samples. The worn profiles were measured by visible light microscopy and examined by SEM in order to determine the wear rates and wear mechanisms. Ti-7.5Si-22.5B alloy presented the highest wear resistance amongst the untreated alloys produced in this work. High temperature PIII was effective to reduce the wear rate and friction coefficient of all the Ti-Si-B sintered alloys. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: To evaluate the null hypotheses that hydrofluoric (HF) acid etching time would neither decrease the biaxial flexural strength of a glass-based veneering ceramic nor enhance it after silane and unfilled resin (UR) applications. Methods: Disc-shaped IPS e.max ZirPress specimens were allocated into 12 groups: G1-control (no-etching), G2-30 s, G3-60 s, G4-90 s, G5-120 s, G6-60 s + 60 s. Groups (G7-G12) were treated in the same fashion as G1-G6, but followed by silane and UR applications. Surface morphology and roughness (Ra and Rq) of the ceramics were assessed by means of scanning electron microscopy (SEM) and profilometry, respectively. Flexural strength was determined by biaxial testing. Data were analyzed by two-way ANOVA and the Sidak test (α = 0.05). Weibull statistics were estimated and finite element analysis (FEA) was carried out to verify the stress concentration end areas of fracture. Results: The interaction (etching time vs. surface treatment) was significant for Ra (p = 0.008) and Rq (0.0075). Resin-treated groups presented significantly lower Ra and Rq than non-treated groups, except for the 60 s group (p < 0.005). SEM revealed that etching affected the ceramic microstructure and that the UR was able to penetrate into the irregularities. A significant effect of etching time (p = 0.029) on flexural strength was seen. G7-G12 presented higher strength than G1-G6 (p < 0.0001). None of experimental groups failed to show 95% confidence intervals of σ 0 and m overlapped. FEA showed lower stress concentration after resin treatment. Significance: HF acid etching time did not show a damaging effect on the ceramic flexural strength. Moreover, the flexural strength could be enhanced after UR treatment. © 2013 Academy of Dental Materials.