964 resultados para Ecuaciones lineales


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Una evolución del método de diferencias finitas ha sido el desarrollo del método de diferencias finitas generalizadas (MDFG) que se puede aplicar a mallas irregulares o nubes de puntos. En este método se emplea una expansión en serie de Taylor junto con una aproximación por mínimos cuadrados móviles (MCM). De ese modo, las fórmulas explícitas de diferencias para nubes irregulares de puntos se pueden obtener fácilmente usando el método de Cholesky. El MDFG-MCM es un método sin malla que emplea únicamente puntos. Una contribución de esta Tesis es la aplicación del MDFG-MCM al caso de la modelización de problemas anisótropos elípticos de conductividad eléctrica incluyendo el caso de tejidos reales cuando la dirección de las fibras no es fija, sino que varía a lo largo del tejido. En esta Tesis también se muestra la extensión del método de diferencias finitas generalizadas a la solución explícita de ecuaciones parabólicas anisótropas. El método explícito incluye la formulación de un límite de estabilidad para el caso de nubes irregulares de nodos que es fácilmente calculable. Además se presenta una nueva solución analítica para una ecuación parabólica anisótropa y el MDFG-MCM explícito se aplica al caso de problemas parabólicos anisótropos de conductividad eléctrica. La evidente dificultad de realizar mediciones directas en electrocardiología ha motivado un gran interés en la simulación numérica de modelos cardiacos. La contribución más importante de esta Tesis es la aplicación de un esquema explícito con el MDFG-MCM al caso de la modelización monodominio de problemas de conductividad eléctrica. En esta Tesis presentamos un algoritmo altamente eficiente, exacto y condicionalmente estable para resolver el modelo monodominio, que describe la actividad eléctrica del corazón. El modelo consiste en una ecuación en derivadas parciales parabólica anisótropa (EDP) que está acoplada con un sistema de ecuaciones diferenciales ordinarias (EDOs) que describen las reacciones electroquímicas en las células cardiacas. El sistema resultante es difícil de resolver numéricamente debido a su complejidad. Proponemos un método basado en una separación de operadores y un método sin malla para resolver la EDP junto a un método de Runge-Kutta para resolver el sistema de EDOs de la membrana y las corrientes iónicas. ABSTRACT An evolution of the method of finite differences has been the development of generalized finite difference (GFD) method that can be applied to irregular grids or clouds of points. In this method a Taylor series expansion is used together with a moving least squares (MLS) approximation. Then, the explicit difference formulae for irregular clouds of points can be easily obtained using a simple Cholesky method. The MLS-GFD is a mesh-free method using only points. A contribution of this Thesis is the application of the MLS-GFDM to the case of modelling elliptic anisotropic electrical conductivity problems including the case of real tissues when the fiber direction is not fixed, but varies throughout the tissue. In this Thesis the extension of the generalized finite difference method to the explicit solution of parabolic anisotropic equations is also given. The explicit method includes a stability limit formulated for the case of irregular clouds of nodes that can be easily calculated. Also a new analytical solution for homogeneous parabolic anisotropic equation has been presented and an explicit MLS- GFDM has been applied to the case of parabolic anisotropic electrical conductivity problems. The obvious difficulty of performing direct measurements in electrocardiology has motivated wide interest in the numerical simulation of cardiac models. The main contribution of this Thesis is the application of an explicit scheme based in the MLS-GFDM to the case of modelling monodomain electrical conductivity problems using operator splitting including the case of anisotropic real tissues. In this Thesis we present a highly efficient, accurate and conditionally stable algorithm to solve a monodomain model, which describes the electrical activity in the heart. The model consists of a parabolic anisotropic partial differential equation (PDE), which is coupled to systems of ordinary differential equations (ODEs) describing electrochemical reactions in the cardiac cells. The resulting system is challenging to solve numerically, because of its complexity. We propose a method based on operator splitting and a meshless method for solving the PDE together with a Runge-Kutta method for solving the system of ODE’s for the membrane and ionic currents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La Aeroelasticidad fue definida por Arthur Collar en 1947 como "el estudio de la interacción mutua entre fuerzas inerciales, elásticas y aerodinámicas actuando sobre elementos estructurales expuestos a una corriente de aire". Actualmente, esta definición se ha extendido hasta abarcar la influencia del control („Aeroservoelasticidad‟) e, incluso, de la temperatura („Aerotermoelasticidad‟). En el ámbito de la Ingeniería Aeronáutica, los fenómenos aeroelásticos, tanto estáticos (divergencia, inversión de mando) como dinámicos (flameo, bataneo) son bien conocidos desde los inicios de la Aviación. Las lecciones aprendidas a lo largo de la Historia Aeronáutica han permitido establecer criterios de diseño destinados a mitigar la probabilidad de sufrir fenómenos aeroelásticos adversos durante la vida operativa de una aeronave. Adicionalmente, el gran avance experimentado durante esta última década en el campo de la Aerodinámica Computacional y en la modelización aeroelástica ha permitido mejorar la fiabilidad en el cálculo de las condiciones de flameo de una aeronave en su fase de diseño. Sin embargo, aún hoy, los ensayos en vuelo siguen siendo necesarios para validar modelos aeroelásticos, verificar que la aeronave está libre de inestabilidades aeroelásticas y certificar sus distintas envolventes. En particular, durante el proceso de expansión de la envolvente de una aeronave en altitud/velocidad, se requiere predecir en tiempo real las condiciones de flameo y, en consecuencia, evitarlas. A tal efecto, en el ámbito de los ensayos en vuelo, se han desarrollado diversas metodologías que predicen, en tiempo real, las condiciones de flameo en función de condiciones de vuelo ya verificadas como libres de inestabilidades aeroelásticas. De entre todas ellas, aquella que relaciona el amortiguamiento y la velocidad con un parámetro específico definido como „Margen de Flameo‟ (Flutter Margin), permanece como la técnica más común para proceder con la expansión de Envolventes en altitud/velocidad. No obstante, a pesar de su popularidad y facilidad de aplicación, dicha técnica no es adecuada cuando en la aeronave a ensayar se hallan presentes no-linealidades mecánicas como, por ejemplo, holguras. En particular, en vuelos de ensayo dedicados específicamente a expandir la envolvente en altitud/velocidad, las condiciones de „Oscilaciones de Ciclo Límite‟ (Limit Cycle Oscillations, LCOs) no pueden ser diferenciadas de manera precisa de las condiciones de flameo, llevando a una determinación excesivamente conservativa de la misma. La presente Tesis desarrolla una metodología novedosa, basada en el concepto de „Margen de Flameo‟, que permite predecir en tiempo real las condiciones de „Ciclo Límite‟, siempre que existan, distinguiéndolas de las de flameo. En una primera parte, se realiza una revisión bibliográfica de la literatura acerca de los diversos métodos de ensayo existentes para efectuar la expansión de la envolvente de una aeronave en altitud/velocidad, el efecto de las no-linealidades mecánicas en el comportamiento aeroelástico de dicha aeronave, así como una revisión de las Normas de Certificación civiles y militares respecto a este tema. En una segunda parte, se propone una metodología de expansión de envolvente en tiempo real, basada en el concepto de „Margen de Flameo‟, que tiene en cuenta la presencia de no-linealidades del tipo holgura en el sistema aeroelástico objeto de estudio. Adicionalmente, la metodología propuesta se valida contra un modelo aeroelástico bidimensional paramétrico e interactivo programado en Matlab. Para ello, se plantean las ecuaciones aeroelásticas no-estacionarias de un perfil bidimensional en la formulación espacio-estado y se incorpora la metodología anterior a través de un módulo de análisis de señal y otro módulo de predicción. En una tercera parte, se comparan las conclusiones obtenidas con las expuestas en la literatura actual y se aplica la metodología propuesta a resultados experimentales de ensayos en vuelo reales. En resumen, los principales resultados de esta Tesis son: 1. Resumen del estado del arte en los métodos de ensayo aplicados a la expansión de envolvente en altitud/velocidad y la influencia de no-linealidades mecánicas en la determinación de la misma. 2. Revisión de la normas de Certificación Civiles y las normas Militares en relación a la verificación aeroelástica de aeronaves y los límites permitidos en presencia de no-linealidades. 3. Desarrollo de una metodología de expansión de envolvente basada en el Margen de Flameo. 4. Validación de la metodología anterior contra un modelo aeroelástico bidimensional paramétrico e interactivo programado en Matlab/Simulink. 5. Análisis de los resultados obtenidos y comparación con resultados experimentales. ABSTRACT Aeroelasticity was defined by Arthur Collar in 1947 as “the study of the mutual interaction among inertia, elastic and aerodynamic forces when acting on structural elements surrounded by airflow”. Today, this definition has been updated to take into account the Controls („Aeroservoelasticity‟) and even the temperature („Aerothermoelasticity‟). Within the Aeronautical Engineering, aeroelastic phenomena, either static (divergence, aileron reversal) or dynamic (flutter, buzz), are well known since the early beginning of the Aviation. Lessons learned along the History of the Aeronautics have provided several design criteria in order to mitigate the probability of encountering adverse aeroelastic phenomena along the operational life of an aircraft. Additionally, last decade improvements experienced by the Computational Aerodynamics and aeroelastic modelization have refined the flutter onset speed calculations during the design phase of an aircraft. However, still today, flight test remains as a key tool to validate aeroelastic models, to verify flutter-free conditions and to certify the different envelopes of an aircraft. Specifically, during the envelope expansion in altitude/speed, real time prediction of flutter conditions is required in order to avoid them in flight. In that sense, within the flight test community, several methodologies have been developed to predict in real time flutter conditions based on free-flutter flight conditions. Among them, the damping versus velocity technique combined with a Flutter Margin implementation remains as the most common technique used to proceed with the envelope expansion in altitude/airspeed. However, although its popularity and „easy to implement‟ characteristics, several shortcomings can adversely affect to the identification of unstable conditions when mechanical non-linearties, as freeplay, are present. Specially, during test flights devoted to envelope expansion in altitude/airspeed, Limits Cycle Oscillations (LCOs) conditions can not be accurately distinguished from those of flutter and, in consequence, it leads to an excessively conservative envelope determination. The present Thesis develops a new methodology, based on the Flutter Margin concept, that enables in real time the prediction of the „Limit Cycle‟ conditions, whenever they exist, without degrading the capability of predicting the flutter onset speed. The first part of this Thesis presents a review of the state of the art regarding the test methods available to proceed with the envelope expansion of an aircraft in altitude/airspeed and the effect of mechanical non-linearities on the aeroelastic behavior. Also, both civil and military regulations are reviewed with respect aeroelastic investigation of air vehicles. The second part of this Thesis proposes a new methodology to perform envelope expansion in real time based on the Flutter Margin concept when non-linearities, as freeplay, are present. Additionally, this methodology is validated against a Matlab/Slimulink bidimensional aeroelastic model. This model, parametric and interactive, is formulated within the state-space field and it implements the proposed methodology through two main real time modules: A signal processing module and a prediction module. The third part of this Thesis compares the final conclusions derived from the proposed methodology with those stated by the flight test community and experimental results. In summary, the main results provided by this Thesis are: 1. State of the Art review of the test methods applied to envelope expansion in altitude/airspeed and the influence of mechanical non-linearities in its identification. 2. Review of the main civil and military regulations regarding the aeroelastic verification of air vehicles and the limits set when non-linearities are present. 3. Development of a methodology for envelope expansion based on the Flutter Margin concept. 4. A Matlab/Simulink 2D-[aeroelastic model], parametric and interactive, used as a tool to validate the proposed methodology. 5. Conclusions driven from the present Thesis and comparison with experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La presente Tesis Doctoral tiene como objetivo el estudio de flujo turbulento cargado con partículas sólidas a través de canales y tuberías de sección constante usando un enfoque Euleriano-Lagrangiano. El campo de flujo de la fase de transporte (aire) se resuelve usando simulación de grandes escalas (LES), implementada en un programa de volúmenes finitos mientras que las ecuaciones gobernantes de la fase dispersa son resueltas por medio de un algoritmo de seguimiento Lagrangiano de partículas que ha sido desarrollado y acoplado al programa que resuelve el flujo. Se estudia de manera sistemática y progresiva la interacción fluido→partícula (one-way coupling), a través de diferentes configuraciones geométricas en coordenadas cartesianas (canales de sección constante y variable) y en coordenadas cilíndricas (tuberías de sección constante y sección variable) abarcando diferentes números de Reynolds y diferentes tamaños de partículas; todos los resultados obtenidos han sido comparados con datos publicados previamente. El estudio de flujo multifásico a través de, tuberías de sección variable, ha sido abordada en otras investigaciones mayoritariamente de forma experimental o mediante simulación usando modelos de turbulencia menos complejos y no mediante LES. El patrón de flujo que se verifica en una tubería con expansión es muy complejo y dicha configuración geométrica se halla en múltiples aplicaciones industriales que involucran el transporte de partículas sólidas, por ello es de gran interés su estudio. Como hecho innovador, en esta tesis no solo se resuelven las estadísticas de velocidad del fluido y las partículas en tuberías con diferentes tamaños de expansión y diferentes regímenes de flujo sino que se caracteriza, usando diversas formulaciones del número de Stokes y el parámetro de arrastre, el ingreso y acumulación de partículas dentro de la zona de recirculación, obteniéndose resultados coincidentes con datos experimentales. ABSTRACT The objective of this Thesis research is to study the turbulent flow laden with solid particles through channels and pipes with using Eulerian-Lagrangian approach. The flow field of the transport phase (air ) is solved using large eddy simulation ( LES ) implemented in a program of finite volume while the governing equations of the dispersed phase are resolved by means of a particle Lagrangian tracking algorithm which was developed and coupled to principal program flow solver . We studied systematically and progressively the fluid interaction → particle ( one- way coupling ) , through different geometric configurations in Cartesian coordinates ( channel with constant and variable section) and in cylindrical coordinates ( pipes with constant section and variable section ) covering different Reynolds numbers and different particle sizes, all results have been compared with previously published data . The study of multiphase flow through, pipes with variable section has been addressed in other investigations predominantly experimentally or by simulation using less complex models and no turbulence by LES. The flow pattern is verified in a pipe expansion is very complex and this geometry is found in many industrial applications involving the transport of solid particles, so it is of great interest to study. As an innovator fact , in this Thesis not only finds fluid velocity statistics and particles with different sizes of pipe expansion and different flow regimes but characterized, using various formulations of the Stokes number and the drag parameter are resolved, the entry and accumulation of particles within the recirculation zone , matching results obtained with experimental data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a mathematical model related to the stationary regime of a plasma magnetically confined in a Stellarator device in the nuclear fusion. The mathematical problem may be reduced to an nonlinear elliptic inverse nonlocal two dimensional free{boundary problem. The nonlinear terms involving the unknown functions of the problem and its rearrangement. Our main goal is to determinate the existence and the estimate on the location and size of region where the solution is nonnegative almost everywhere (corresponding to the plasma region in the physical model)