994 resultados para Drosophila Models
Resumo:
This guide provides a variety of tools that can help an educator, building staff or school district decide how to include environmental education in their curriculum.
Resumo:
Learning is the ability of an organism to adapt to the changes of its environment in response to its past experience. It is a widespread ability in the animal kingdom, but its evolutionary aspects are poorly known. Learning ability is supposedly advantageous under some conditions, when environmental conditions are not too stable - because in this case there is no need to learn to predict any event in the environment - and not changing too fast - otherwise environmental cues cannot be used because they are not reliable. Nevertheless, learning ability is also known to be costly in terms of energy needed for neuronal synthesis, memory formation, initial mistakes. During my PhD, I focused on the study of genetic variability of learning ability in natural populations. Genetic variability is the basis on which natural selection and genetic drift can act. How does learning ability vary in nature? What are the roles of additive genetic variation or maternal effects in this variation? Is it involved in evolutionary trade-offs with other fitness-related traits?¦I investigated a natural population of fruit fly, Drosophila melanogaster, as a model organism. Its learning ability is easy to measure with associative memory tests. I used two research tools: multiple inbred and isofemale lines derived from a natural population as a representative sample. My work was divided into three parts.¦First, I investigated the effects of inbreeding on aversive learning (avoidance of an odor previously associated with mechanical shock). While the inbred lines consistently showed reduced egg-to-adult viability by 28 %, the effects of inbreeding on learning performance was 18 % and varied among assays, with a trend to be most pronounced for intermediate conditioning intensity. Variation among inbred lines indicates that ample genetic variance for learning was segregating in the base population, and suggests that the inbreeding depression observed in learning performance was mostly due to dominance rather than overdominance. Across the inbred lines, learning performance was positively correlated with the egg-to-adult viability. This positive genetic correlation contradicts previous studies which observed a trade-off between learning ability and lifespan or larval competitive ability. It suggests that much of the genetic variation for learning is due to pleiotropic effects of genes affecting other functions related to survival. Together with the overall mild effects of inbreeding on learning performance, this suggests that genetic variation specifically affecting learning is either very low, or is due to alleles with mostly additive (semi-dominant) effects. It also suggests that alleles reducing learning performance are on average partially recessive, because their effect does not appear in the outbred base population. Moreover, overdominance seems unlikely as major cause of the inbreeding depression, because even if the overall mean of the inbred line is smaller than the outbred base population, some of the inbred lines show the same learning score as the outbred base population. If overdominance played an important part in inbreeding depression, then all the homozygous lines should show lower learning ability than¦outbred base population.¦In the second part of my project, I sampled the same natural population again and derived isofemale lines (F=0.25) which are less adapted to laboratory conditions and therefore are more representative of the variance of the natural population. They also showed some genetic variability for learning, and for three other fitness-related traits possibly related with learning: resistance to bacterial infection, egg-to-adult viability and developmental time. Nevertheless, the genetic variance of learning ability did not appear to be smaller than the variance of the other traits. The positive correlation previously observed between learning ability and egg- to-adult viability did not appear in isofemale lines (nor a negative correlation). It suggests that there was still genetic variability within isofemale lines and that they did not fix the highly deleterious pleiotropic alleles possibly responsible for the previous correlation.¦In order to investigate the relative amount of nuclear (additive and non-additive effects) and extra-nuclear (maternal and paternal effect) components of variance in learning ability and other fitness-related traits among the inbred lines tested in part one, I performed a diallel cross between them. The nuclear additive genetic variance was higher than other components for learning ability and survival to learning ability, but in contrast, maternal effects were more variable than other effects for developmental traits. This suggests that maternal effects, which reflects effects from mitochondrial DNA, epigenetic effects, or the amount of nutrients that are invested by the mother in the egg, are more important in the early stage of life, and less at the adult stage. There was no additive genetic correlation between learning ability and other traits, indicating that the correlation between learning ability and egg-to-adult viability observed in the first pat of my project was mostly due to recessive genes.¦Finally, my results showed that learning ability is genetically variable. The diallel experiment showed additive genetic variance was the most important component of the total variance. Moreover, every inbred or isofemale line showed some learning ability. This suggested that alleles impairing learning ability are eliminated by selection, and therefore that learning ability is under strong selection in natural populations of Drosophila. My results cannot alone explain the maintenance of the observed genetic variation. Even if I cannot eliminate the hypothesis of pleiotropy between learning ability and the other fitness-related traits I measured, there is no evidence for any trade-off between these traits and learning ability. This contradicts what has been observed between learning ability and other traits like lifespan and larval competitivity.¦L'apprentissage représente la capacité d'un organisme à s'adapter aux changement de son environnement au cours de sa vie, en réponse à son expérience passée. C'est une capacité très répandue dans le règne animal, y compris pour les animaux les plus petits et les plus simples, mais les aspects évolutifs de l'apprentissage sont encore mal connus. L'apprentissage est supposé avantageux dans certaines conditions, quand l'environnement n'est ni trop stable - dans ce cas, il n'y a rien à apprendre - ni trop variable - dans ce cas, les indices sur lesquels se reposer changent trop vite pour apprendre. D'un autre côté, l'apprentissage a aussi des coûts, en terme de synthèse neuronale, pour la formation de la mémoire, ou de coûts d'erreur initiale d'apprentissage. Pendant ma thèse, j'ai étudié la variabilité génétique naturelle des capacités d'apprentissage. Comment varient les capacités d'apprentissage dans la nature ? Quelle est la part de variation additive, l'impact des effets maternel ? Est-ce que l'apprentissage est impliqué dans des interactions, de type compromis évolutifs, avec d'autres traits liés à la fitness ?¦Afin de répondre à ces questions, je me suis intéressée à la mouche du vinaigre, ou drosophile, un organisme modèle. Ses capacités d'apprentissage sont facile à étudier avec un test de mémoire reposant sur l'association entre un choc mécanique et une odeur. Pour étudier ses capacités naturelles, j'ai dérivé de types de lignées d'une population naturelle: des lignées consanguines et des lignées isofemelles.¦Dans une première partie, je me suis intéressée aux effets de la consanguinité sur les capacités d'apprentissage, qui sont peu connues. Alors que les lignées consanguines ont montré une réduction de 28% de leur viabilité (proportion d'adultes émergeants d'un nombre d'oeufs donnés), leurs capacités d'apprentissage n'ont été réduites que de 18%, la plus forte diminution étant obtenue pour un conditionnement modéré. En outre, j'ai également observé que les capacités d'apprentissage était positivement corrélée à la viabilité entre les lignées. Cette corrélation est surprenante car elle est en contradiction avec les résultats obtenus par d'autres études, qui montrent l'existence de compromis évolutifs entre les capacités d'apprentissage et d'autres traits comme le vieillissement ou la compétitivité larvaire. Elle suggère que la variation génétique des capacités d'apprentissage est due aux effets pleiotropes de gènes récessifs affectant d'autres fonctions liées à la survie. Ces résultats indiquent que la variation pour les capacités d'apprentissage est réduite comparée à celle d'autres traits ou est due à des allèles principalement récessifs. L'hypothèse de superdominance semble peu vraisemblable, car certaines des lignées consanguines ont obtenu des scores d'apprentissage égaux à ceux de la population non consanguine, alors qu'en cas de superdominance, elles auraient toutes dû obtenir des scores inférieurs.¦Dans la deuxième partie de mon projet, j'ai mesuré les capacités d'apprentissage de lignées isofemelles issues de la même population initiale que les lignées consanguines. Ces lignées sont issues chacune d'un seul couple, ce qui leur donne un taux d'hétérozygosité supérieur et évite l'élimination de lignées par fixation d'allèles délétères rares. Elles sont ainsi plus représentatives de la variabilité naturelle. Leur variabilité génétique est significative pour les capacités d'apprentissage, et trois traits liés à la fois à la fitness et à l'apprentissage: la viabilité, la résistance à l'infection bactérienne et la vitesse de développement. Cependant, la variabilité des capacités d'apprentissage n'apparaît cette fois pas inférieure à celle des autres traits et aucune corrélation n'est constatée entre les capacité d'apprentissage et les autres traits. Ceci suggère que la corrélation observée auparavant était surtout due à la fixation d'allèles récessifs délétères également responsables de la dépression de consanguinité.¦Durant la troisième partie de mon projet, je me suis penchée sur la décomposition de la variance observée entre les lignées consanguines observée en partie 1. Quatre composants ont été examinés: la variance due à des effets nucléaires (additifs et non additifs), et due à des effets parentaux (maternels et paternels). J'ai réalisé un croisement diallèle de toutes les lignées. La variance additive nucléaire s'est révélée supérieure aux autres composants pour les capacités d'apprentissage et la résistance à l'infection bactérienne. Par contre, les effets maternels étaient plus importants que les autres composants pour les traits développementaux (viabilité et vitesse de développement). Ceci suggère que les effets maternels, dus à G ADN mitochondrial, à l'épistasie ou à la quantité de nutriments investis dans l'oeuf par la mère, sont plus importants dans les premiers stades de développement et que leur effet s'estompe à l'âge adulte. Il n'y a en revanche pas de corrélation statistiquement significative entre les effets additifs des capacités d'apprentissage et des autres traits, ce qui indique encore une fois que la corrélation observée entre les capacités d'apprentissage et la viabilité dans la première partie du projet était due à des effets d'allèles partiellement récessifs.¦Au, final, mes résultats montrent bien l'existence d'une variabilité génétique pour les capacités d'apprentissage, et l'expérience du diallèle montre que la variance additive de cette capacité est importante, ce qui permet une réponse à la sélection naturelle. Toutes les lignées, consanguines ou isofemelles, ont obtenu des scores d'apprentissage supérieurs à zéro. Ceci suggère que les allèles supprimant les capacités d'apprentissage sont fortement contre-sélectionnés dans la nature Néanmoins, mes résultats ne peuvent pas expliquer le maintien de cette variabilité génétique par eux-même. Même si l'hypothèse de pléiotropie entre les capacités d'apprentissage et l'un des traits liés à la fitness que j'ai mesuré ne peut être éliminée, il n'y a aucune preuve d'un compromis évolutif pouvant contribuer au maintien de la variabilité.
Resumo:
Application of semi-distributed hydrological models to large, heterogeneous watersheds deals with several problems. On one hand, the spatial and temporal variability in catchment features should be adequately represented in the model parameterization, while maintaining the model complexity in an acceptable level to take advantage of state-of-the-art calibration techniques. On the other hand, model complexity enhances uncertainty in adjusted model parameter values, therefore increasing uncertainty in the water routing across the watershed. This is critical for water quality applications, where not only streamflow, but also a reliable estimation of the surface versus subsurface contributions to the runoff is needed. In this study, we show how a regularized inversion procedure combined with a multiobjective function calibration strategy successfully solves the parameterization of a complex application of a water quality-oriented hydrological model. The final value of several optimized parameters showed significant and consistentdifferences across geological and landscape features. Although the number of optimized parameters was significantly increased by the spatial and temporal discretization of adjustable parameters, the uncertainty in water routing results remained at reasonable values. In addition, a stepwise numerical analysis showed that the effects on calibration performance due to inclusion of different data types in the objective function could be inextricably linked. Thus caution should be taken when adding or removing data from an aggregated objective function.
Resumo:
Radioactive soil-contamination mapping and risk assessment is a vital issue for decision makers. Traditional approaches for mapping the spatial concentration of radionuclides employ various regression-based models, which usually provide a single-value prediction realization accompanied (in some cases) by estimation error. Such approaches do not provide the capability for rigorous uncertainty quantification or probabilistic mapping. Machine learning is a recent and fast-developing approach based on learning patterns and information from data. Artificial neural networks for prediction mapping have been especially powerful in combination with spatial statistics. A data-driven approach provides the opportunity to integrate additional relevant information about spatial phenomena into a prediction model for more accurate spatial estimates and associated uncertainty. Machine-learning algorithms can also be used for a wider spectrum of problems than before: classification, probability density estimation, and so forth. Stochastic simulations are used to model spatial variability and uncertainty. Unlike regression models, they provide multiple realizations of a particular spatial pattern that allow uncertainty and risk quantification. This paper reviews the most recent methods of spatial data analysis, prediction, and risk mapping, based on machine learning and stochastic simulations in comparison with more traditional regression models. The radioactive fallout from the Chernobyl Nuclear Power Plant accident is used to illustrate the application of the models for prediction and classification problems. This fallout is a unique case study that provides the challenging task of analyzing huge amounts of data ('hard' direct measurements, as well as supplementary information and expert estimates) and solving particular decision-oriented problems.
Resumo:
A recent study of a pair of sympatric species of cichlids in Lake Apoyo in Nicaragua is viewed as providing probably one of the most convincing examples of sympatric speciation to date. Here, we describe and study a stochastic, individual-based, explicit genetic model tailored for this cichlid system. Our results show that relatively rapid (<20,000 generations) colonization of a new ecological niche and (sympatric or parapatric) speciation via local adaptation and divergence in habitat and mating preferences are theoretically plausible if: (i) the number of loci underlying the traits controlling local adaptation, and habitat and mating preferences is small; (ii) the strength of selection for local adaptation is intermediate; (iii) the carrying capacity of the population is intermediate; and (iv) the effects of the loci influencing nonrandom mating are strong. We discuss patterns and timescales of ecological speciation identified by our model, and we highlight important parameters and features that need to be studied empirically to provide information that can be used to improve the biological realism and power of mathematical models of ecological speciation.
Resumo:
The prediction of rockfall travel distance below a rock cliff is an indispensable activity in rockfall susceptibility, hazard and risk assessment. Although the size of the detached rock mass may differ considerably at each specific rock cliff, small rockfall (<100 m3) is the most frequent process. Empirical models may provide us with suitable information for predicting the travel distance of small rockfalls over an extensive area at a medium scale (1:100 000¿1:25 000). "Solà d'Andorra la Vella" is a rocky slope located close to the town of Andorra la Vella, where the government has been documenting rockfalls since 1999. This documentation consists in mapping the release point and the individual fallen blocks immediately after the event. The documentation of historical rockfalls by morphological analysis, eye-witness accounts and historical images serve to increase available information. In total, data from twenty small rockfalls have been gathered which reveal an amount of a hundred individual fallen rock blocks. The data acquired has been used to check the reliability of the main empirical models widely adopted (reach and shadow angle models) and to analyse the influence of parameters which affecting the travel distance (rockfall size, height of fall along the rock cliff and volume of the individual fallen rock block). For predicting travel distances in maps with medium scales, a method has been proposed based on the "reach probability" concept. The accuracy of results has been tested from the line entailing the farthest fallen boulders which represents the maximum travel distance of past rockfalls. The paper concludes with a discussion of the application of both empirical models to other study areas.
Resumo:
The major goal of evolutionary thermal biology is to understand how variation in temperature shapes phenotypic evolution. Comparing thermal reaction norms among populations from different thermal environments allows us to gain insights into the evolutionary mechanisms underlying thermal adaptation. Here, we have examined thermal adaptation in six wild populations of the fruit fly (Drosophila melanogaster) from markedly different natural environments by analyzing thermal reaction norms for fecundity, thorax length, wing area, and ovariole number under ecologically realistic fluctuating temperature regimes in the laboratory. Contrary to expectation, we found only minor differences in the thermal optima for fecundity among populations. Differentiation among populations was mainly due to differences in absolute (and partly also relative) thermal fecundity performance. Despite significant variation among populations in the absolute values of morphological traits, we observed only minor differentiation in their reaction norms. Overall, the thermal reaction norms for all traits examined were remarkably similar among different populations. Our results therefore suggest that thermal adaptation in D. melanogaster predominantly involves evolutionary changes in absolute trait values rather than in aspects of thermal reaction norms.