1000 resultados para Double sinh—Gordon
Resumo:
The ground state structure of few-electron concentric double quantum rings is investigated within the local spin density approximation. Signatures of inter-ring coupling in the addition energy spectrum are identified and discussed. We show that the electronic configurations in these structures can be greatly modulated by the inter-ring distance: At short and long distances the low-lying electron states localize in the inner and outer rings, respectively, and the energy structure is essentially that of an isolated single quantum ring. However, at intermediate distances the electron states localized in the inner and the outer ring become quasidegenerate and a rather entangled, strongly-correlated system is formed.
Resumo:
Within local-spin-density functional theory, we have investigated the ¿dissociation¿ of few-electron circular vertical semiconductor double quantum ring artificial molecules at zero magnetic field as a function of interring distance. In a first step, the molecules are constituted by two identical quantum rings. When the rings are quantum mechanically strongly coupled, the electronic states are substantially delocalized, and the addition energy spectra of the artificial molecule resemble those of a single quantum ring in the few-electron limit. When the rings are quantum mechanically weakly coupled, the electronic states in the molecule are substantially localized in one ring or the other, although the rings can be electrostatically coupled. The effect of a slight mismatch introduced in the molecules from nominally identical quantum wells, or from changes in the inner radius of the constituent rings, induces localization by offsetting the energy levels in the quantum rings. This plays a crucial role in the appearance of the addition spectra as a function of coupling strength particularly in the weak coupling limit.
Resumo:
We have investigated the dipole charge- and spin-density response of few-electron two-dimensional concentric nanorings as a function of the intensity of a erpendicularly applied magnetic field. We show that the dipole response displays signatures associated with the localization of electron states in the inner and outer ring favored by the perpendicularly applied magnetic field. Electron localization produces a more fragmented spectrum due to the appearance of additional edge excitations in the inner and outer ring.
Resumo:
The enhancement in the production of even-Z nuclei observed in nuclear fission has also been observed in fragments produced from heavy ion collsions. Beams of 40Ar, 40Cl, and 40Ca at 25 MeV/nucleon were impinged on 58Fe and 58Ni targets. The resulting fragments were detected using the MSU 4pi detector array, which had additional silicon detectors for better isotopic resolution. Comparison of the ratios of yields for each element showed enhancement of even-Z fragment production. The enhancement was more pronounced for reactions with a greater difference in the N/Z of the compound system. However, this effect was less for systems that were more neutron rich. The average N/Z for fragments also displayed an odd-even effect with a lower average N/Z for the even-Z fragments. This is related to the greater availability of neutron-poor isotopes for even-Z nuclei
Resumo:
Decimal multiplication is an integral part of financial, commercial, and internet-based computations. This paper presents a novel double digit decimal multiplication (DDDM) technique that performs 2 digit multiplications simultaneously in one clock cycle. This design offers low latency and high throughput. When multiplying two n-digit operands to produce a 2n-digit product, the design has a latency of (n / 2) 1 cycles. The paper presents area and delay comparisons for 7-digit, 16-digit, 34-digit double digit decimal multipliers on different families of Xilinx, Altera, Actel and Quick Logic FPGAs. The multipliers presented can be extended to support decimal floating-point multiplication for IEEE P754 standard
Resumo:
Decimal multiplication is an integral part of financial, commercial, and internet-based computations. This paper presents a novel double digit decimal multiplication (DDDM) technique that offers low latency and high throughput. This design performs two digit multiplications simultaneously in one clock cycle. Double digit fixed point decimal multipliers for 7digit, 16 digit and 34 digit are simulated using Leonardo Spectrum from Mentor Graphics Corporation using ASIC Library. The paper also presents area and delay comparisons for these fixed point multipliers on Xilinx, Altera, Actel and Quick logic FPGAs. This multiplier design can be extended to support decimal floating point multiplication for IEEE 754- 2008 standard.
Resumo:
The paper introduces research on transatlantic relations done by neo-Gramscian authors. This research is distinctive by focusing on class in international relations and by using the concept of hegemony in a relational sense. Hegemony is leadership through the active consent of other classes and groups. A central question of this neo-Gramscian research is whether an international class of capitalists has emerged. Some authors have answered in the positive. This paper, however, maintains that hegemony in the international realm is still exercised by the American state, though its foreign economic policies have been greatly influenced by internationally-oriented corporations and that these actors have increasingly found allies among economic elites in other countries. The paper explores the relationship between hegemony by the American state and by internationally-oriented capital groups against the backdrop of transatlantic relations in the post-war period and the currrent debate on labor rights in international trade agreements.
Resumo:
Double photoionization of argon was studied by photon induced fluorescence spectroscopy (PIFS). Cross sections for the double photoionization into the {3s3p^5} {^1P}, {^3P} states of Ar^{+ +} are presented for exciting photon energies between threshold and 120 eV. In the threshold range the energy dependencies of these cross sections were determined for the first time. Singlet and triplet states are populated with comparable probabilities at equal excess energies, in contrast to predictions of the extended Wannier theory. At hv = 100eV the spin-or-bit splitting of the 3s3p^5 ^3P state was resolved, and a cross section for the production of Ar^{+ +} {3s^0}{3p^6 } {^1S_0} was determined for the first time.
Resumo:
Perturbation theory in the lowest non-vanishing order in interelectron interaction has been applied to the theoretical investigation of double-ionization decays of resonantly excited single-electron states. The formulae for the transition probabilities were derived in the LS coupling scheme, and the orbital angular momentum and spin selection rules were obtained. In addition to the formulae, which are exact in this order, three approximate expressions, which correspond to illustrative model mechanisms of the transition, were derived as limiting cases of the exact ones. Numerical results were obtained for the decay of the resonantly excited Kr 1 3d^{-1}5p[^1P] state which demonstrated quite clearly the important role of the interelectron interaction in double-ionization processes. On the other hand, the results obtained show that low-energy electrons can appear in the photoelectron spectrum below the ionization threshold of the 3d shell. As a function of the photon frequency, the yield of these low-energy electrons is strongly amplified by the resonant transition of the 3d electron to 5p (or to other discrete levels), acting as an intermediate state, when the photon frequency approaches that of the transition.
Resumo:
Cross sections for double photoionization of the Ne L shell into the 2s2p{^5 3}P^0} and ^1P^0 and the 2s^02p^6 ^1S^e states were measured for energies from threshold up to 150 eV, using photon induced fluorescence spectroscopy. Both 2s2p^5 channels were observed with comparable magnitude in contradiction to a propensity rule based on the Wannier-Peterkop-Rau theory. A comparison of the summed ^3P^0 and ^1P^0 cross sections with MBPT calculations results in a deviation of 50%.
Resumo:
A program is presented for the construction of relativistic symmetry-adapted molecular basis functions. It is applicable to 36 finite double point groups. The algorithm, based on the projection operator method, automatically generates linearly independent basis sets. Time reversal invariance is included in the program, leading to additional selection rules in the non-relativistic limit.
Resumo:
Three different drying methods, a forced convection double-pass solar drier (DPSD), typical cabinet type natural convection solar drier (CD) and traditional open-sun drying (OSD) were used for draying of bamboo shoots in central Vietnam. During drying the operational parameters such as drying temperature, relative humidity, air velocity, insolation and water evaporation have been recorded hourly. The mean drying temperatures and relative humidity in the drying chamber were 55.2°C, 23.7%; 47.5°C, 37,6%; 36.2°C, 47.8% in DPSD, CD and OSD, respectively. The mean global radiation during all experimental runs was 670 Wm^−2. The result also shows that fastest drying process was occurred in DPSD where the falling-rate period was achieved after 7 hours, in change to OSD where it took 16 hours. The overall drying efficiency was 23.11%, 15.83% and 9.73% in case of DPSD, CD and OSD, respectively. Although the construction cost of DPSD was significantly higher than in CD, the drying costs per one kilogram of bamboo shoots were by 42.8% lower in case of DPSD as compared to CD. Double-pass solar drier was found to be technically and economically suitable for drying of bamboo shoots under the specific conditions in central Vietnam and in all cases, the use of this drier led to considerable reduction in drying time in comparison to traditional open-sun drying.
Resumo:
Protecting the quality of children growth and development becomes a supreme qualification for the betterment of a nation. Double burden child malnutrition is emerging worldwide which might have a strong influence to the quality of child brain development and could not be paid-off on later life. Milk places a notable portion during the infancy and childhood. Thus, the deep insight on milk consumption pattern might explain the phenomenon of double burden child malnutrition correlated to the cognitive impairments. Objective: Current study is intended (1) to examine the current face of Indonesian double burden child malnutrition: a case study in Bogor, West Java, Indonesia, (2) to investigate the association of this phenomenon with child brain development, and (3) to examine the contribution of socioeconomic status and milk consumption on this phenomenon so that able to formulate some possible solutions to encounter this problem. Design: A cross-sectional study using a structured coded questionnaire was conducted among 387 children age 5-6 years old and their parents from 8 areas in Bogor, West-Java, Indonesia on November 2012 to December 2013, to record some socioeconomic status, anthropometric measurements, and history of breast feeding. Diet and probability of milk intake was assessed by two 24 h dietary recalls and food frequency questionnaire (FFQ). Usual daily milk intake was calculated using Multiple Source Method (MSM). Some brain development indicators (IQ, EQ, learning, and memory ability) using Projective Multi-phase Orientation method was also executed to learn the correlation between double burden child malnutrition and some brain development indicator. Results and conclusions: A small picture of child double burden malnutrition is shown in Bogor, West Java, Indonesia, where prevalence of Severe Acute Malnutrition (SAM) is 27.1%, Moderate Acute Malnutrition (MAM) is 24.9%, and overnutrition is 7.7%. This phenomenon proves to impair the child brain development. The malnourished children, both under- and over- nourished children have significantly (P-value<0.05) lower memory ability compared to the normal children (memory score, N; SAM = 45.2, 60; MAM = 48.5, 61; overweight = 48.4, 43; obesity = 47.9, 60; normal = 52.4, 163). The plausible reasons behind these evidences are the lack of nutrient intake during the sprout growth period on undernourished children or increasing adiposity on overnourished children might influence the growth of hippocampus area which responsible to the memory ability. Either undernutrition or overnutrition, the preventive action on this problem is preferable to avoid ongoing cognitive performance loss of the next generation. Some possible solutions for this phenomenon are promoting breast feeding initiation and exclusive breast feeding practices for infants, supporting the consumption of a normal portion of milk (250 to 500 ml per day) for children, and breaking the chain of poverty by socioeconomic improvement. And, the national food security becomes the fundamental point for the betterment of the next. In the global context, the causes of under- and over- nutrition have to be opposed through integrated and systemic approaches for a better quality of the next generation of human beings.