980 resultados para Displacement.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we show the effect of electron-phonon scattering on the performance of monolayer (1L) MoS2 and WSe2 channel based n-MOSFETs. Electronic properties of the channel materials are evaluated using the local density approximation (LDA) in density functional theory (DFT). For phonon dispersion we employ the small displacement / frozen phonon calculations in DFT. Thereafter using the non-equilibrium Green's function (NEGF) formalism, we study the effect of electron-phonon scattering and the contribution of various phonon modes on the performance of such devices. It is found that the performance of the WSe2 device is less impacted by phonon scattering, showing a ballisticity of 83% for 1L-WSe2 FET for channel length of 10 nm. Though 1L-MoS2 FET of similar dimension shows a lesser ballisticity of 75%. Also in the presence of scattering there exist a a 21-36% increase in the intrinsic delay time (tau) and a 10-18% reduction in peak transconductance (g(m)) for WSe2 and MoS2 devices respectively. (C) 2015 Author(s).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The trapezoidal rule, which is a special case of the Newmark family of algorithms, is one of the most widely used methods for transient hyperbolic problems. In this work, we show that this rule conserves linear and angular momenta and energy in the case of undamped linear elastodynamics problems, and an ``energy-like measure'' in the case of undamped acoustic problems. These conservation properties, thus, provide a rational basis for using this algorithm. In linear elastodynamics problems, variants of the trapezoidal rule that incorporate ``high-frequency'' dissipation are often used, since the higher frequencies, which are not approximated properly by the standard displacement-based approach, often result in unphysical behavior. Instead of modifying the trapezoidal algorithm, we propose using a hybrid finite element framework for constructing the stiffness matrix. Hybrid finite elements, which are based on a two-field variational formulation involving displacement and stresses, are known to approximate the eigenvalues much more accurately than the standard displacement-based approach, thereby either bypassing or reducing the need for high-frequency dissipation. We show this by means of several examples, where we compare the numerical solutions obtained using the displacement-based and hybrid approaches against analytical solutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a hybrid finite element based methodology to solve the coupled fluid structure problem of squeeze film effects in vibratory MEMS devices, such as gyroscopes, RF switches, and 2D resonators. The aforementioned devices often have a thin plate like structure vibrating normally to a fixed substrate, and are generally not perfectly vacuum packed. This results in a thin air film being trapped between the vibrating plate and the fixed substrate which behaves like a squeeze film offering both stiffness and damping. For accurate modelling of such devices the squeeze film effects must be incorporated. Extensive literature is available on squeeze film modelling, however only a few studies address the coupled fluid elasticity problem. The majority of the studies that account for the plate elasticity coupled with the fluid equation, either use approximate mode shapes for the plate or use iterative solution strategies. In an earlier work we presented a single step coupled methodology using only one type of displacement based element to solve the coupled problem. The displacement based finite element models suffer from locking issues when it comes to modelling very thin structures with the lateral dimensions much larger than the plate thickness as is typical in MEMS devices with squeeze film effects. In this work we present another coupled formulation where we have used hybrid elements to model the structural domain. The numerical results show a huge improvement in convergence and accuracy with coarse hybrid mesh as compared to displacement based formulations. We further compare our numerical results with experimental data from literature and find them to be in good accordance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present the design and development of a portable, hand-operated composite compliant mechanism for estimating the failure-load of cm-sized stiff objects whose stiffness is of the order of 10 s of kN/m. The motivation for the design comes from the need to estimate the failure-load of mesoscale cemented sand specimens in situ, which is not possible with traditional devices used for large specimens or very small specimens. The composite compliant device, developed in this work, consists of two compliant mechanisms: a force-amplifying compliant mechanism (FaCM) to amplify sufficiently the force exerted by hand in order to break the specimen and a displacement-amplifying compliant mechanism (DaCM) to enable measurement of the force using a proximity sensor. The two mechanisms are designed using the selection-maps technique to amplify the force up to 100N by about a factor of 3 and measure the force with a resolution of 15 mN. The composite device, made using a FaCM, a DaCM, and a Hall effect-based proximity sensor, was tested on mesoscale cemented sand specimens that were 10mm in diameter and 20mm in length. The results are compared with those of a large commercial instrument. Through the experiments, it was observed that the failure-load of the cemented sand specimens varied from 0.95N to 24.33 N, depending on the percentage of cementation and curing period. The estimation of the failure-load using the compliant device was found to be within 1.7% of the measurements obtained using the commercial instrument and thus validating the design. The details of the design, prototyping, specimen preparation, testing, and the results comprise the paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biomechanical assays offer a good alternative to biochemical assays in diagnosing disease states and assessing the efficacy of drugs. In view of this, we have developed a miniature compliant tool to estimate the bulk stiffness of cells, particularly MCF-7 (Michigan Cancer Foundation) cells whose diameter is 12-15 mu m in suspension. The compliant tool comprises a gripper and a displacement-amplifying compliant mechanism (DaCM), where the former helps in grasping the cell and the latter enables vision-based force-sensing. A DaCM is necessary because the microscope's field of view at the required magnification is not sufficient to simultaneously observe the cell and the movement of a point on the gripper, in order to estimate the force. Therefore, a DaCMis strategically embedded within an existing gripper design leading to a composite compliant mechanism. The DaCM is designed using the kinetoelastostatic map technique to achieve a 42 nN resolution of the force. The gripper, microfabricated with SU-8 using photolithography, is within the footprint of about 10 mm by 10 mm with the smallest feature size of about 5 mu m. The experiments with MCF-7 cells suggest that the bulk stiffness of these is in the range of 8090 mN/m. The details of design, prototyping and testing comprise the paper. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An online computing server, Online_DPI (where DPI denotes the diffraction precision index), has been created to calculate the `Cruickshank DPI' value for a given three-dimensional protein or macromolecular structure. It also estimates the atomic coordinate error for all the atoms available in the structure. It is an easy-to-use web server that enables users to visualize the computed values dynamically on the client machine. Users can provide the Protein Data Bank (PDB) identification code or upload the three-dimensional atomic coordinates from the client machine. The computed DPI value for the structure and the atomic coordinate errors for all the atoms are included in the revised PDB file. Further, users can graphically view the atomic coordinate error along with `temperature factors' (i.e. atomic displacement parameters). In addition, the computing engine is interfaced with an up-to-date local copy of the Protein Data Bank. New entries are updated every week, and thus users can access all the structures available in the Protein Data Bank. The computing engine is freely accessible online at http://cluster.physics.iisc.ernet.in/dpi/.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work aims to investigate the phase transition, dispersion and diffusion behavior of nanocomposites of carbon nanotube (CNT) and straight chain alkanes. These materials are potential candidates for organic phase change materials(PCMs) and have attracted flurry of research recently. Accurate experimental evaluation of the mass, thermal and transport properties of such composites is both difficult as well as economically taxing. Additionally it is crucial to understand the factors that results in modification or enhancement of their characteristic at atomic or molecular level. Classical molecular dynamics approach has been extended to elucidate the same. Bulk atomistic models have been generated and subjected to rigorous multistage equilibration. To reaffirm the approach, both canonical and constant-temperature, constant-pressure ensembles were employed to simulate the models under consideration. Explicit determination of kinetic, potential, non-bond and total energy assisted in understanding the enhanced thermal and transport property of the nanocomposites from molecular point of view. Crucial parameters including mean square displacement and simulated self diffusion coefficient precisely define the balance of the thermodynamic and hydrodynamic interactions. Radial distribution function also reflected the density variation, strength and mobility of the nanocomposites. It is expected that CNT functionalization could improve the dispersion within n-alkane matrix. This would further ameliorate the mass and thermal properties of the composite. Additionally, the determined density was in good agreement with experimental data. Thus, molecular dynamics can be utilized as a high throughput technique for theoretical investigation of nanocomposites PCMs. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ionic polymer metal composites (IPMC) actuator for flapping insect scale wing is advantageous due to its low mass, high deflection and simple actuation mechanism. Some of the factors that affect the actuation of IPMC are the amount of hydration in the polymer membrane and the environmental conditions such as temperature, humidity etc. In structural design, the attachment of wing on the IPMC actuators is an important concern as the attached wing increases the mass of actuators thereby affecting the parameters like displacement, stiffness and resonant frequencies. Such IPMC actuators have to produce sufficient actuation force and frequency to lift and flap the attached wing. Therefore, it is relevant to study the influence of attachment of wing on the actuator parameters (displacement, resonant frequency, block force and stiffness) and performance of the actuators. This paper is divided into two parts; the first part deals with the modeling of the IPMC actuators for its effect on the level of water uptake and temperature using energy based method. The modeling method adapted is validated with the experimental procedure used to actuate the IPMC. The second part deals with the experimental analysis of IPMC actuation at dry, wet and in water conditions. The effect of end mass loading on the performance of 20 Hz, high frequency actuator (HFA) and 8.7 Hz, low frequency IPMC actuators (LFA) and sensors is studied. The IPMC actuators are attached with IPMC flapping wing at its free end and performance analysis on the attached wing is also carried out.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Elephant are considered major drivers of ecosystems, but their effects within small-scale landscape features and on other herbivores still remain unclear. Elephant impact on vegetation has been widely studied in areas where elephant have been present for many years. We therefore examined the combined effect of short-term elephant presence (< 4 years) and hillslope position on tree species assemblages, resource availability, browsing intensity and soil properties. Short-term elephant presence did not affect woody species assemblages, but did affect height distribution, with greater sapling densities in elephant access areas. Overall tree and stem densities were also not affected by elephant. By contrast, slope position affected woody species assemblages, but not height distributions and densities. Variation in species assemblages was statistically best explained by levels of total cations, Zinc, sand and clay. Although elephant and mesoherbivore browsing intensities were unaffected by slope position, we found lower mesoherbivore browsing intensity on crests with high elephant browsing intensity. Thus, elephant appear to indirectly facilitate the survival of saplings, via the displacement of mesoherbivores, providing a window of opportunity for saplings to grow into taller trees. In the short-term, effects of elephant can be minor and in the opposite direction of expectation. In addition, such behavioural displacement promotes recruitment of saplings into larger height classes. The interaction between slope position and elephant effect found here is in contrast with other studies, and illustrates the importance of examining ecosystem complexity as a function of variation in species presence and topography. The absence of a direct effect of elephant on vegetation, but the presence of an effect on mesoherbivore browsing, is relevant for conservation areas especially where both herbivore groups are actively managed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fretting is of a serious concern in many industrial components, specifically, in nuclear industry for the safe and reliable operation of various component and/or system. Under fretting condition small amplitude oscillations induce surface degradation in the form of surface cracks and/or surface wear. Comprehensive experimental studies have been carried out simulating different fretting regimes under ambient and vacuum (10(-9) MPa) conditions and, temperature up to 400 degrees C. Studies have been carried out with stainless steel spheres on stainless steel flats, and stainless steel spheres against chromium carbide, with 25% nickel chrome binder coatings. Mechanical responses are correlated with the damage observed. It has been observed that adhesion plays a vital role in material degradation process, and its effectiveness depends on mechanical variables such as normal load, interfacial tangential displacement, characteristics of the contacting bodies and most importantly on the environment conditions. Material degradation mechanism for ductile materials involved severe plastic deformation, which results in the initiation or nucleation of cracks. Ratcheting has been observed as the governing damage mode for crack nucleation under cyclic tangential loading condition. Further, propagation of the cracks has been observed under fatigue and their orientation has been observed to be governed by the contact conditions prevailing at the contact interface. Coated surfaces show damage in the form of brittle fracture and spalling of the coatings. Existence of stick slip has been observed under high normal load and low displacement amplitude. It has also been observed that adhesion at the contact interface and instantaneous cohesive strength of the contacting bodies dictates the occurrence of material transfer. The paper discusses the mechanics and mechanisms involved in fretting damage under controlled environment conditions. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, sensing coverage by wireless camera-embedded sensor networks (WCSNs), a class of directional sensors is studied. The proposed work facilitates the autonomous tuning of orientation parameters and displacement of camera-sensor nodes in the bounded field of interest (FoI), where the network coverage in terms of every point in the FoI is important. The proposed work is first of its kind to study the problem of maximizing coverage of randomly deployed mobile WCSNs which exploits their mobility. We propose an algorithm uncovered region exploration algorithm (UREA-CS) that can be executed in centralized and distributed modes. Further, the work is extended for two special scenarios: 1) to suit autonomous combing operations after initial random WCSN deployments and 2) to improve the network coverage with occlusions in the FoI. The extensive simulation results show that the performance of UREA-CS is consistent, robust, and versatile to achieve maximum coverage, both in centralized and distributed modes. The centralized and distributed modes are further analyzed with respect to the computational and communicational overheads.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An experimental study of plane strain wedge indentation of a model porous brittle solid has been made to understand the effect of indentation parameters on the evolution of the deformation field and the accompanying volume change. A series of high-speed, high-resolution images of the indentation region and simultaneous measurements of load response were captured through the progression of the indentation process. Particle image velocimetry analysis of the images facilitated in situ measurement of the evolution of the resulting plastic zone in terms of incremental material displacement (velocity), strain rate, strain and volume change (e.g., local pore collapse). These measurements revealed initiation and propagation of flow localizations and fractures, as well as enabled estimate of volume changes occurring in the deformation zone. The results were directly compared with theoretical estimates of indentation pressure and deformation zone geometry and were used to validate a modified cavity expansion solution that incorporates effects of volume changes in the plastic zone. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using first-principles density functional theory calculations, a systematic study of the lattice dynamics and related (e.g., dielectric and anharmonic) properties of BiOCuSe (bismuth-copper oxyselenide), along with a comparison with its isostructural analog LaOCuSe, is performed to find the origin of the ultralow thermal conductivity. in BiOCuSe. From the marked differences in some of these properties of the two materials, the reasons why BiOCuSe is a better thermal insulator than LaOCuSe are elucidated. For this class of oxychalcogenide thermoelectrics, phonon frequencies with symmetries, characters, spectroscopic activities, displacement patterns, and pressure coefficients of different zone-center modes, dielectric constants, dynamical charges, and phonon and Gruneisen dispersions are also determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a practical situation, it is difficult to model exact contact conditions clue to challenges involved in the estimation of contact forces, and relative displacements between the contacting bodies. Sliding and seizure conditions were simulated on first-of-a-kind displacement controlled system. Self-mated stainless steels have been investigated in detail. Categorization of contact conditions prevailing at the contact interface has been carried out based on the variation of coefficient of friction with number of cycles, and three-dimensional fretting loops. Surface and subsurface micro-cracks have been observed, and their characteristic shows strong dependence on loading conditions. Existence of shear bands in the subsurface region has been observed for high strain and low strain rate loading conditions. Studies also include the influence of initial surface roughness on the damage under two extreme contact conditions. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper focuses on understanding the seismic response of geosynthetic reinforced retaining walls through shaking table tests on models of modular block and rigid faced reinforced retaining walls. Reduced-scale models of retaining walls reinforced with geogrid layers were constructed in a laminar box mounted on a uniaxial shaking table and subjected to various levels of sinusoidal base shaking. Models were instrumented with ultrasonic displacement sensors, earth pressure sensors and accelerometers. Effects of backfill density, number of reinforcement layers and reinforcement type on the performance of rigid faced and modular block walls were studied through different series of model tests. Performances of the walls were assessed in terms of face deformations, crest settlement and acceleration amplification at different elevations and compared. Modular block walls performed better than the rigid faced walls for the same level of base shaking because of the additional support derived by stacking the blocks with an offset. Type and quantity of reinforcement has significant effect on the seismic performance of both the types of walls. Displacements are more sensitive to relative density of the backfill and decrease with increasing relative density, the effect being more pronounced in case of unreinforced walls compared to the reinforced ones. Acceleration amplifications are not affected by the wall facing and inclusion of reinforcement. (C) 2015 Elsevier Ltd. All rights reserved.