971 resultados para Direct response
Resumo:
This paper presents the design and implementation of direct power controllers for three-phase matrix converters (MC) operating as Unified Power Flow Controllers (UPFC). Theoretical principles of the decoupled linear power controllers of the MC-UPFC to minimize the cross-coupling between active and reactive power control are established. From the matrix converter based UPFC model with a modified Venturini high frequency PWM modulator, decoupled controllers for the transmission line active (P) and reactive (Q) power direct control are synthesized. Simulation results, obtained from Matlab/Simulink, are presented in order to confirm the proposed approach. Results obtained show decoupled power control, zero error tracking, and fast responses with no overshoot and no steady-state error.
Resumo:
Locating and identifying points as global minimizers is, in general, a hard and time-consuming task. Difficulties increase in the impossibility of using the derivatives of the functions defining the problem. In this work, we propose a new class of methods suited for global derivative-free constrained optimization. Using direct search of directional type, the algorithm alternates between a search step, where potentially good regions are located, and a poll step where the previously located promising regions are explored. This exploitation is made through the launching of several instances of directional direct searches, one in each of the regions of interest. Differently from a simple multistart strategy, direct searches will merge when sufficiently close. The goal is to end with as many direct searches as the number of local minimizers, which would easily allow locating the global extreme value. We describe the algorithmic structure considered, present the corresponding convergence analysis and report numerical results, showing that the proposed method is competitive with currently commonly used global derivative-free optimization solvers.
Resumo:
Materials selection is a matter of great importance to engineering design and software tools are valuable to inform decisions in the early stages of product development. However, when a set of alternative materials is available for the different parts a product is made of, the question of what optimal material mix to choose for a group of parts is not trivial. The engineer/designer therefore goes about this in a part-by-part procedure. Optimizing each part per se can lead to a global sub-optimal solution from the product point of view. An optimization procedure to deal with products with multiple parts, each with discrete design variables, and able to determine the optimal solution assuming different objectives is therefore needed. To solve this multiobjective optimization problem, a new routine based on Direct MultiSearch (DMS) algorithm is created. Results from the Pareto front can help the designer to align his/hers materials selection for a complete set of materials with product attribute objectives, depending on the relative importance of each objective.
Resumo:
A multiobjective approach for optimization of passive damping for vibration reduction in sandwich structures is presented in this paper. Constrained optimization is conducted for maximization of modal loss factors and minimization of weight of sandwich beams and plates with elastic laminated constraining layers and a viscoelastic core, with layer thickness and material and laminate layer ply orientation angles as design variables. The problem is solved using the Direct MultiSearch (DMS) solver for derivative-free multiobjective optimization and solutions are compared with alternative ones obtained using genetic algorithms.
Resumo:
In order to correctly assess the biaxial fatigue material properties one must experimentally test different load conditions and stress levels. With the rise of new in-plane biaxial fatigue testing machines, using smaller and more efficient electrical motors, instead of the conventional hydraulic machines, it is necessary to reduce the specimen size and to ensure that the specimen geometry is appropriate for the load capacity installed. At the present time there are no standard specimen's geometries and the indications on literature how to design an efficient test specimen are insufficient. The main goal of this paper is to present the methodology on how to obtain an optimal cruciform specimen geometry, with thickness reduction in the gauge area, appropriate for fatigue crack initiation, as a function of the base material sheet thickness used to build the specimen. The geometry is optimized for maximum stress using several parameters, ensuring that in the gauge area the stress distributions on the loading directions are uniform and maximum with two limit phase shift loading conditions (delta = 0 degrees and (delta = 180 degrees). Therefore the fatigue damage will always initiate on the center of the specimen, avoiding failure outside this region. Using the Renard Series of preferred numbers for the base material sheet thickness as a reference, the reaming geometry parameters are optimized using a derivative-free methodology, called direct multi search (DMS) method. The final optimal geometry as a function of the base material sheet thickness is proposed, as a guide line for cruciform specimens design, and as a possible contribution for a future standard on in-plane biaxial fatigue tests
Resumo:
The objective of lhe present study was to determine the stimulatory response to antirabies vaccination promoted by glucan in mice. Glucan increased both resistance to infection and antibody titres and this effect was more evident when glucan was used at dose of 0.5 mg, administered intraperitoneally before, during and after immunization and when the challenge virus was applied to the foot-pad.
Resumo:
The current capabilities of mobile phones in terms of communication, processing and storage, enables its use to form autonomous networks of devices that can be used in case of collapse or inexistent support from a communication infrastructure. In this paper, we propose a network configuration of nodes that provides high-speed bidirectional device-to-device communication, with symmetrical data transfer rates, in Wi-Fi Direct multi-group scenarios, without using performance hindering broadcasts. Copyright © 2015 ICST.
Resumo:
In today’s healthcare paradigm, optimal sedation during anesthesia plays an important role both in patient welfare and in the socio-economic context. For the closed-loop control of general anesthesia, two drugs have proven to have stable, rapid onset times: propofol and remifentanil. These drugs are related to their effect in the bispectral index, a measure of EEG signal. In this paper wavelet time–frequency analysis is used to extract useful information from the clinical signals, since they are time-varying and mark important changes in patient’s response to drug dose. Model based predictive control algorithms are employed to regulate the depth of sedation by manipulating these two drugs. The results of identification from real data and the simulation of the closed loop control performance suggest that the proposed approach can bring an improvement of 9% in overall robustness and may be suitable for clinical practice.
Resumo:
Thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Electrical and Computer Engineering