968 resultados para Differential equations, Linear.


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cancer biology is a complex and expanding field of science study. Due its complexity, there is a strong motivation to integrate many fields of knowledge to study cancer biology, and biological stoichiometry can make this. Biological stoichiometry is the study of the balance of multiple chemical elements in biological systems. A key idea in biological stoichiometry is the growth rate hypothesis, which states that variation in the carbon:nitrogen:phosphorus stoichiometry of living things is associated with growth rate because of the elevated demands for phosphorusrich ribosomal RNA and other elements necessary to protein synthesis. As tumor cells has high rate proliferation, the growth rate hypothesis can be used in cancer study. In this work the dynamic of two tumors (primary and secondary) and the chemical elements carbon and nitrogen are simulate and analyzed through mathematical models that utilize as central idea biological stoichiometry. Differential equations from mathematical model are solved by numerical method Runge-Kutta fourth order

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Even today tables are used in the calculation of structures formed by flat elements, these methods are acceptable only for a limited number of cases, but even so, in some situations, tables are used. With time some methods of differential equations resolutions were emerging and accepted as the most effective solution. Today, with the advancement in technology, there are already some programs able to solve more complex problems in less time using these methods. Aiming to optimize time and better understand the physical behavior of plates, this work presents the theory of plate, the Boundary Element Method (BEM) applied to solve problems of plates (slabs) with various boundary conditions and load through the program Placas2 (TAGUTI, Y.-2010) in Fortran language

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The term model refers to any representation of a real system. The use of models in Hydrogeology can be valuable predictive tools for management of groundwater resources. The numeric models of groundwater flow, object of this study, consist on a set of differential equations that describe the water flow in the porous medium. In this context, numeric simulations were made for a sub-basin located at Cara Preta farm – Santa Rita do Passa Quatro – SP. The aquifer at the local is composed by rocks of Pirambóia Formation, which is part of Guarani Aquifer System. It was developed a conceptual model from previous studies in the area, and from that, simulations were made through the software Visual Modflow®. The conceptual model established previously was considered consistent through the results of simulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work presents a theoretical study of ordinary differential equations of first order directed so as to provide basis for the development of an educational software that helps students and researchers confronted with this issue. The algorithm was developed in HTML language in to that the results provide a website that allows the audience to access the software anywhere which has internet connection

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we study the sliding mode of piecewise bounded quadratic systems in the plane given by a non-smooth vector field Z=(X,Y). Analyzing the singular, crossing and sliding sets, we get the conditions which ensure that any solution, including the sliding one, is bounded.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we introduce a type of Hypercomplex Fourier Series based on Quaternions, and discuss on a Hypercomplex version of the Square of the Error Theorem. Since their discovery by Hamilton (Sinegre [1]), quaternions have provided beautifully insights either on the structure of different areas of Mathematics or in the connections of Mathematics with other fields. For instance: I) Pauli spin matrices used in Physics can be easily explained through quaternions analysis (Lan [2]); II) Fundamental theorem of Algebra (Eilenberg [3]), which asserts that the polynomial analysis in quaternions maps into itself the four dimensional sphere of all real quaternions, with the point infinity added, and the degree of this map is n. Motivated on earlier works by two of us on Power Series (Pendeza et al. [4]), and in a recent paper on Liouville’s Theorem (Borges and Mar˜o [5]), we obtain an Hypercomplex version of the Fourier Series, which hopefully can be used for the treatment of hypergeometric partial differential equations such as the dumped harmonic oscillation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEIS