998 resultados para Damage quantification
Resumo:
Hyperglycemia-induced damage to the glomerular podocyte is thought to be a critical early event in diabetic nephropathy. Interventions that prevent podocyte damage or loss have been shown to have potential for the treatment of diabetic nephropathy. New data show that conditioned medium from adipocyte-derived mesenchymal stem cells has the potential to protect podocytes from high-glucose-induced damage. Furthermore, epidermal growth factor may be the critical ingredient mediating this effect. These data suggest that components of the conditioned medium of mesenchymal stem cells, in addition to the cells themselves, may have potential for the treatment of diseases such as diabetic nephropathy.
Resumo:
Background: Barrett's oesophagus (BO) is a well recognized precursor of the majority of cases of oesophageal adenocarcinoma (OAC). Endoscopic surveillance of BO patients is frequently undertaken in an attempt to detect early OAC, high grade dysplasia (HGD) or low grade dysplasia (LGD). However histological interpretation and grading of dysplasia is subjective and poorly reproducible. The alternative flow cytometry and cytology-preparation image cytometry techniques require large amounts of tissue and specialist expertise which are not widely available for frontline health care.
Methods: This study has combined whole slide imaging with DNA image cytometry, to provide a novel method for the detection and quantification of abnormal DNA contents. 20 cases were evaluated, including 8 Barrett's specialised intestinal metaplasia (SIM), 6 LGD and 6 HGD. Feulgen stained oesophageal sections (1µm thickness) were digitally scanned in their entirety and evaluated to select regions of interests and abnormalities. Barrett’s mucosa was then interactively chosen for automatic nuclei segmentation where irrelevant cell types are ignored. The combined DNA content histogram for all selected image regions was then obtained. In addition, histogram measurements, including 5c exceeding ratio (xER-5C), 2c deviation index (2cDI) and DNA grade of malignancy (DNA-MG), were computed.
Results: The histogram measurements, xER-5C, 2cDI and DNA-MG, were shown to be effective in differentiating SIM from HGD, SIM from LGD, and LGD from HGD. All three measurements discriminated SIM from HGD cases successfully with statistical significance (pxER-5C=0.0041, p2cDI=0.0151 and pDNA-MG=0.0057). Statistical significance is also achieved differentiating SIM from LGD samples with pxER-5C=0.0019, p2cDI=0.0023 and pDNA-MG=0.0030. Furthermore the differences between LGD and HGD cases are statistical significant (pxER-5C=0.0289, p2cDI=0.0486 and pDNA-MG=0.0384).
Conclusion: Whole slide image cytometry is a novel and effective method for the detection and quantification of abnormal DNA content in BO. Compared to manual histological review, this proposed method is more objective and reproducible. Compared to flow cytometry and cytology-preparation image cytometry, the current method is low cost, simple to use and only requires a single 1µm tissue section. Whole slide image cytometry could assist the routine clinical diagnosis of dysplasia in BO, which is relevant for future progression risk to OAC.
Resumo:
Tetrodotoxin (TTX) is one of the most potent marine neurotoxins reported. The global distribution of this toxin is spreading with the European Atlantic coastline now being affected. Climate change and increasing pollution have been suggested as underlying causes for this. In the present study, two different sample preparation techniques were used to extract TTX from Trumpet shells and pufferfish samples. Both extraction procedures (accelerated solvent extraction (ASE) and a simple solvent extraction) were shown to provide good recoveries (80-92%). A UPLC-MS/MS method was developed for the analysis of TTX and validated following the guidelines contained in the Commission Decision 2002/657/EC for chemical contaminant analysis. The performance of this procedure was demonstrated to be fit for purpose. This study is the first report on the use of ASE as a mean for TTX extraction, the use of UPLC-MS/MS for TTX analysis, and the validation of this method for TTX in gastropods.
Resumo:
Purpose: To determine relationship between the magnitude of intraocular pressure (IOP) during a fixed-duration episode of acute elevation and the loss of retinal function and structure 4 weeks later in rats.
Methods: Unilateral elevation of IOP (105 minutes) was achieved manometrically in adult Brown Norway rats (9 groups; n = 4 to 8 each, 10–100 mm Hg and sham control). Full-field ERGs were recorded simultaneously from treated and control eyes 4 weeks after IOP elevation. Scotopic ERG stimuli were white flashes (26.04 to 2.72 log cd.s.m^-2). Photopic ERGs were recorded (1.22 to 2.72 log cd.s.m22) after 15 min of light adaptation (150 cd/m2). Relative amplitude (treated/control, %) of ERG components versus IOP was described with a cummulative normal function. Retinal ganglion cell (RGC) layer density was determined post mortem by histology.
Results: All ERG components failed to recover completely normal amplitudes by 4 weeks after the insult if IOP was 70 mmHg or greater during the episode. There was no ERG recovery at all if IOP was 100 mmHg. Outer retinal (photoreceptor) function demonstrated the least sensitivity to prior acute IOP elevation. ERG components reflecting inner retinal function were correlated with post mortem RGC layer density.
Conclusions: Retinal function recovers after IOP normalization, such that it requires a level of acute IOP elevation approximately 10 mmHg higher to cause a pattern of permanent dysfunction similar to that observed during the acute event. There is a ‘threshold’ for permanent retinal functional loss in the rat at an IOP between 60 and 70 mmHg if sustained for 105 minutes or more.
Resumo:
Germline mutations in BRCA1 predispose carriers to a high incidence of breast and ovarian cancers. BRCA1 functions to maintain genomic stability through critical roles in DNA repair, cell-cycle arrest, and transcriptional control. A major question has been why BRCA1 loss or mutation leads to tumors mainly in estrogen-regulated tissues, given that BRCA1 has essential functions in all cell types. Here, we report that estrogen and estrogen metabolites can cause DNA double-strand breaks (DSB) in estrogen receptora- negative breast cells and that BRCA1 is required to repair these DSBs to prevent metabolite-induced genomic instability.We found that BRCA1 also regulates estrogen metabolism and metabolite-mediated DNA damage by repressing the transcription of estrogen-metabolizing enzymes, such as CYP1A1, in breast cells. Finally, we used a knock-in human cell model with a heterozygous BRCA1 pathogenic mutation to show how BRCA1 haploinsufficiency affects these processes. Our findings provide pivotal new insights into why BRCA1 mutation drives the formation of tumors in estrogen-regulated tissues, despite the general role of BRCA1 in DNA repair in all cell types. © 2014 American Association for Cancer Research.
Resumo:
Finite element modeling of the formation of pre-loaded damage in cement mantles of orthopaedic joint replacements was presented. The existence of cracking suggested a high level of residual stress. The direction of maximum principal stress vectors corresponded well with the observed crack orientation. Results suggested that cracking depends upon a combination of residual stress, porosity and temperature rise during polymerization.