1000 resultados para DNA-Schäden
Resumo:
Variations in different types of genomes have been found to be responsible for a large degree of physical diversity such as appearance and susceptibility to disease. Identification of genomic variations is difficult and can be facilitated through computational analysis of DNA sequences. Newly available technologies are able to sequence billions of DNA base pairs relatively quickly. These sequences can be used to identify variations within their specific genome but must be mapped to a reference sequence first. In order to align these sequences to a reference sequence, we require mapping algorithms that make use of approximate string matching and string indexing methods. To date, few mapping algorithms have been tailored to handle the massive amounts of output generated by newly available sequencing technologies. In otrder to handle this large amount of data, we modified the popular mapping software BWA to run in parallel using OpenMPI. Parallel BWA matches the efficiency of multithreaded BWA functions while providing efficient parallelism for BWA functions that do not currently support multithreading. Parallel BWA shows significant wall time speedup in comparison to multithreaded BWA on high-performance computing clusters, and will thus facilitate the analysis of genome sequencing data.
Resumo:
Scientists have been debating for decades the origin of life on earth. A number of hypotheses were proposed as to what emerged first RNA or DNA; with most scientists are in favour of the "RNA World" hypothesis. Assuming RNA emerged first, it fellow that the RNA polymerases would've appeared before DNA polymerases. Using recombinant DNA technology and bioinformatics we undertook this study to explore the relationship between RNA polymerases, reverse transcriptase and DNA polymerases. The working hypothesis is that DNA polymerases evolved from reverse transcriptase and the latter evolved from RNA polymerases. If this hypothesis is correct then one would expect to find various ancient DNA polymerases with varying level of reverse transcriptase activity. In the first phase of this research project multiple sequence alignments were made on the protein sequence of 32 prokaryotic DNA-directed DNA polymerases originating from 11 prokaryotic families against 3 viral reverse transcriptase. The data from such alignments was not very conclusive. DNA polymerases with higher level of reverse transcriptase activity were non-confined to ancient organisms, as one would've expected. The second phase of this project was focused on conditions that may alter the DNA polymerase activity. Various reaction conditions, such as temperature, using various ions (Ni2+, Mn2+, Mg2+) were tested. Interestingly, it was found that the DNA polymerase from the Thermos aquatics family can be made to copy RNA into DNA (i.e. reverse transcriptase activity). Thus it was shown that under appropriate conditions (ions and reactions temperatures) reverse transcriptase activity can be induced in DNA polymerase. In the third phase of this study recombinant DNA technology was used to generate a chimeric DNA polymerase; in attempts to identify the region(s) of the polymerase responsible for RNA-directed DNA polymerase activity. The two DNA polymerases employed were the Thermus aquatic us and Thermus thermophiles. As in the second phase various reaction conditions were investigated. Data indicated that the newly engineered chimeric DNA polymerase can be induced to copy RNA into DNA. Thus the intrinsic reverse transcriptase activity found in ancient DNA polymerases was localized into a domain and can be induced via appropriate reaction conditions.
Resumo:
Endonuclease G (EndoG) is a well conserved mitochondrial nuclease with dual lethal and vital roles in the cell. It non-specifically cleaves endogenous DNA following apoptosis induction, but is also active in non-apoptotic cells for mitochondrial DNA (mtDNA) replication and may also be important for replication, repair and recombination of genomic DNA. The aim of our study was to examine whether EndoG exerts similar activities on exogenous DNA substrates such as plasmid DNA (pDNA) and viral DNA vectors, considering their importance in gene therapy applications. The effects of EndoG knockdown on pDNA stability and levels of encoded reporter gene expression were evaluated in the cervical carcinoma HeLa cells. Transfection of pDNA vectors encoding short-hairpin RNAs (shRNAs) reduced levels of EndoG mRNA and nuclease activity in HeLa cells. In physiological circumstances, EndoG knockdown did not have an effect on the stability of pDNA or the levels of encoded transgene expression as measured over a four day time-course. However, when endogenous expression of EndoG was induced by an extrinsic stimulus (a cationic liposome transfection reagent), targeting of EndoG by shRNA improved the perceived stability and transgene expression of pDNA vectors. Therefore, EndoG is not a mediator of exogenous DNA clearance, but in non-physiological circumstances it may non-specifically cleave intracellular DNA regardless of its origin. To investigate possible effects of EndoG on viral DNA vectors, we constructed and evaluated AdsiEndoG, a first generation adenovirus (Ad5 ΔE1) vector encoding a shRNA directed against EndoG mRNA, along with appropriate Ad5 ΔE1 controls. Infection of HeLa cells with AdsiEndoG at a multiplicity of infection (MOI) of 10 p.f.u./cell resulted in an early cell proliferation defect, absent from cells infected at equivalent MOI with control Ad5 ΔE1 vectors. Replication of Ad5 ΔE1 DNA was detected for all vectors, but AdsiEndoG DNA accumulated to levels that were 50 fold higher than initially, four days after infection, compared to 14 fold for the next highest control Ad5 ΔE1 vector. Deregulation of the cell cycle by EndoG depletion, which is characterized by an accumulation of cells in the G2/M transition, is the most likely reason for the observed cell proliferation defect. The enhanced replication of AdsiEndoG is consistent with this conclusion, as Ad5 ΔE1 DNA replication is intimately related to cell cycling and prolongation or delay in G2/M greatly enhances this process. Furthermore, infection of HeLa with AdsiEndoG at MOI of 50 p.f.u./cell resulted in an almost complete disappearance of viable, adherent tumour cells from culture, whereas almost a third of the cells were still adherent after infection with control Ad5 ΔE1 vectors, relative to the non-infected control. Therefore, targeting of EndoG by RNAi is a viable strategy for improving the oncolytic properties of first generation adenovirus vectors. In addition, AdsiEndoG-mediated knockdown of EndoG reduced homologous recombination between pDNA substrates in HeLa cells. The effect was modest but, nevertheless demonstrated that the proposed role of EndoG in homologous recombination of cellular DNA also extends to exogenous DNA substrates.
Resumo:
DNA assembly is among the most fundamental and difficult problems in bioinformatics. Near optimal assembly solutions are available for bacterial and small genomes, however assembling large and complex genomes especially the human genome using Next-Generation-Sequencing (NGS) technologies is shown to be very difficult because of the highly repetitive and complex nature of the human genome, short read lengths, uneven data coverage and tools that are not specifically built for human genomes. Moreover, many algorithms are not even scalable to human genome datasets containing hundreds of millions of short reads. The DNA assembly problem is usually divided into several subproblems including DNA data error detection and correction, contig creation, scaffolding and contigs orientation; each can be seen as a distinct research area. This thesis specifically focuses on creating contigs from the short reads and combining them with outputs from other tools in order to obtain better results. Three different assemblers including SOAPdenovo [Li09], Velvet [ZB08] and Meraculous [CHS+11] are selected for comparative purposes in this thesis. Obtained results show that this thesis’ work produces comparable results to other assemblers and combining our contigs to outputs from other tools, produces the best results outperforming all other investigated assemblers.
Resumo:
Ordered gene problems are a very common classification of optimization problems. Because of their popularity countless algorithms have been developed in an attempt to find high quality solutions to the problems. It is also common to see many different types of problems reduced to ordered gene style problems as there are many popular heuristics and metaheuristics for them due to their popularity. Multiple ordered gene problems are studied, namely, the travelling salesman problem, bin packing problem, and graph colouring problem. In addition, two bioinformatics problems not traditionally seen as ordered gene problems are studied: DNA error correction and DNA fragment assembly. These problems are studied with multiple variations and combinations of heuristics and metaheuristics with two distinct types or representations. The majority of the algorithms are built around the Recentering- Restarting Genetic Algorithm. The algorithm variations were successful on all problems studied, and particularly for the two bioinformatics problems. For DNA Error Correction multiple cases were found with 100% of the codes being corrected. The algorithm variations were also able to beat all other state-of-the-art DNA Fragment Assemblers on 13 out of 16 benchmark problem instances.
Resumo:
(A) Most azobenzene-based photoswitches require UV light for photoisomerization, which limit their applications in biological systems due to possible photodamage. Cyclic azobenzene derivatives, on the other hand, can undergo cis-trans isomerization when exposed to visible light. A shortened synthetic scheme was developed for the preparation of a building block containing cyclic azobenzene and D-threoninol (cAB-Thr). trans-Cyclic azobenzene was found to thermally isomerize back to the cis-form in a temperature-dependent manner. cAB-Thr was transformed into the corresponding phosphoramidite and subsequently incorporated into oligonucleotides by solid phase synthesis. Melting temperature measurement suggested that incorporation of cis-cAB into oligonucleotides destabilizes DNA duplexes, these findings corroborate with circular dichroism measurement. Finally, Fluorescent Energy Resonance Transfer experiments indicated that trans-cAB can be accommodated in DNA duplexes. (B) Inverse Electron Demand Diels-Alder reactions (IEDDA) between trans-olefins and tetrazines provide a powerful alternative to existing ligation chemistries due to its fast reaction rate, bioorthogonality and mutual orthogonality with other click reactions. In this project, an attempt was pursued to synthesize trans-cyclooctene building blocks for oligonucleotide labeling by reacting with BODIPY-tetrazine. Rel-(1R-4E-pR)-cyclooct-4-enol and rel-(1R,8S,9S,4E)-Bicyclo[6.1.0]non-4-ene-9-ylmethanol were synthesized and then transformed into the corresponding propargyl ether. Subsequent Sonogashira reactions between these propargylated compounds with DMT-protected 5-iododeoxyuridine failed to give the desired products. Finally a methodology was pursued for the synthesis of BODIPY-tetrazine conjugates that will be used in future IEDDA reactions with trans-cyclooctene modified oligonucleotides.
Resumo:
Tesis (Maestría en Ciencias con Especialidad en Biología Molecular e Ingeniería Genética) UANL
Resumo:
Tesis (Maestría en Ciencias con Especialidad en Biología Molecular e Ingeniería Genética) U.A.N.L.
Resumo:
Tesis ( Maestro en Ciencias con Especialidad en Biología Molecular e Ingeniería Genética) U.A.N.L.
Resumo:
Tesis (Maestría en Ciencias con Orientación en Microbiología Industrial) UANL, 2010.
Resumo:
Ce livre est la conclusion d’un projet de recherche de deux ans portant sur les technologies en génétique humaine. Les développements récents en matière de collecte, d’analyse et de conservation du matériel génétique ont soulevé des questions juridiques complexes et ont attiré l’attention de plusieurs avocats, scientifiques et du public. Ce livre présente une analyse de ces questions et une comparaison de la position et de la politique canadienne avec celle en émergence dans divers pays
Resumo:
Affiliation: Zhujun Ao, Éric Cohen & Xiaojian Yao : Département de microbiologie et immunologie, Faculté de Médecine, Université de Montréal
Resumo:
Proteolytic processing of the CUX1 transcription factor generates an isoform, p110 that accelerates entry into S phase. To identify targets of p110 CUX1 that are involved in cell cycle progression, we performed genome-wide location analysis using a promoter microarray. Since there are no antibodies that specifically recognize p110, but not the full-length protein, we expressed physiological levels of a p110 isoform with two tags and purified chromatin by tandem affinity purification (ChAP). Conventional ChIP performed on synchronized populations of cells confirmed that p110 CUX1 is recruited to the promoter of cell cycle-related targets preferentially during S phase. Multiple approaches including silencing RNA (siRNA), transient infection with retroviral vectors, constitutive expression and reporter assays demonstrated that most cell cycle targets are activated whereas a few are repressed or not affected by p110 CUX1. Functional classes that were over-represented among targets included DNA replication initiation. Consistent with this finding, constitutive expression of p110 CUX1 led to a premature and more robust induction of replication genes during cell cycle progression, and stimulated the long-term replication of a plasmid bearing the oriP replicator of Epstein Barr virus (EBV).
Resumo:
Tesis (Doctorado en Ciencias con Especialidad en Biología Molecular e Ingeniería Genética) UANL