999 resultados para DNA DAMAGES
Resumo:
The antioxidant and free radical scavenger properties of melatonin have been well described in the literature. In this study, our objective was to determine the protective effect of the pineal gland hormone against the DNA damage induced by cyclophosphamide (CP), an anti-tumor agent that is widely applied in clinical practice. DNA damage was induced in rats by a single intraperitoneal injection of CP (20 or 50 mg/kg). Animals received melatonin during the dark period for 15 days (1 mg/kg in the drinking water). Rat bone marrow cells were used for the determination of chromosomal aberrations and of formamidopyrimidine DNA glycosylase enzyme (Fpg)-sensitive sites by the comet technique and ofXpf mRNA expression by qRT-PCR. The number (mean ± SE) of chromosomal aberrations in pinealectomized (PINX) animals treated with melatonin and CP (2.50 ± 0.50/100 cells) was lower than that obtained for PINX animals injected with CP (12 ± 1.8/100 cells), thus showing a reduction of 85.8% in the number of chromosomal aberrations. This melatonin-mediated protection was also observed when oxidative lesions were analyzed by the Fpg-sensitive assay, both 24 and 48 h after CP administration. The expression of Xpf mRNA, which is involved in the DNA nucleotide excision repair machinery, was up-regulated by melatonin. The results indicate that melatonin is able to protect bone marrow cells by completely blocking CP-induced chromosome aberrations. Therefore, melatonin administration could be an alternative and effective treatment during chemotherapy.
Resumo:
It has been shown that cytokines can act as molecular adjuvant to enhance the immune response induced by DNA vaccines, but it is unknown whether interleukin 33 (IL-33) can enhance the immunocontraceptive effect induced by DNA vaccines. In the present study, we explored the effects of murine IL-33 on infertility induced by Lagurus lagurus zona pellucida 3 (Lzp3) contraceptive DNA vaccine administered by the mucosal route. Plasmid pcD-Lzp3 and plasmid pcD-mIL-33 were encapsulated with chitosan to generate the nanoparticle chi-(pcD-Lzp3+pcD-mIL-33) as the DNA vaccine. Sixty female ICR mice, divided into 5 groups (n=12/group), were intranasally immunized on days 0, 14, 28, and 42. After intranasal immunization, the anti-LZP3-specific IgG in serum and IgA in vaginal secretions and feces were determined by ELISA. The results showed that chi-(pcD-Lzp3+pcD-mIL-33) co-immunization induced the highest levels of serum IgG, secreted mucosal IgA, and T cell proliferation. Importantly, mice co-immunized with chi-(pcD-Lzp3+pcD-mIL-33) had the lowest birth rate and mean litter size, which correlated with high levels of antibodies. Ovaries from infertile female mice co-immunized with chi-(pcD-Lzp3+pcD-mIL-33) showed abnormal development of ovarian follicles, indicated by atretic follicles and loss of oocytes. Our results demonstrated that intranasal delivery of the molecular adjuvant mIL-33 with chi-pcD-Lzp3significantly increased infertility by enhancing both systemic and mucosal immune responses. Therefore, chi-(pcD-Lzp3+pcD-mIL-33) co-immunization could be a strategy for controlling the population of wild animal pests.
Resumo:
The quantification of human cytomegalovirus (HCMV DNA) by real-time PCR is currently a primary option for laboratory diagnosis of HCMV infection. However, the optimal sample material remains controversial due to the use of different PCR assays. To explore the best blood component for HCMV DNA surveillance after liver transplantation, whole blood (WB), serum (SE), and plasma (PL) specimens were collected simultaneously from targeted patients and examined for HCMV DNA using one commercially available assay. The HCMV DNA-positive rate with WB (16.67%) was higher than that with either SE or PL (8.33%, both P<0.01). Quantitative DNA levels in WB were of greater magnitude than those in SE (WB-SE mean log-transformed difference, 0.99; 95%CI=0.74-1.25; P<0.0001) and PL (WB-PL mean log-transformed difference, 1.37; 95%CI=1.07-1.66; P<0.0001). Dynamic monitoring revealed that HCMV DNA in WB was positive sooner and had higher values for a longer period of time during therapy. With earlier positive detection, higher sensitivity, and yield of greater viral loads, WB compared favorably to SE or PL and hence is recommended as the superior material for HCMV DNA surveillance after liver transplantation. In addition, infant recipients require more intensive monitoring and prophylactic care because of their higher susceptibility to primary HCMV infection.
Resumo:
DNA hypomethylation may activate oncogene transcription, thus promoting carcinogenesis and tumor development. S-adenosylmethionine (SAM) is a methyl donor in numerous methylation reactions and acts as an inhibitor of intracellular demethylase activity, which results in hypermethylation of DNA. The main objectives of this study were to determine whether DNA hypomethylation correlated with vascular endothelial growth factor-C (VEGF-C) expression, and the effect of SAM on VEGF-C methylation and gastric cancer growth inhibition. VEGF-C expression was assayed by Western blotting and RT-qPCR in gastric cancer cells, and by immunohistochemistry in tumor xenografts. VEGF-C methylation was assayed by bisulfite DNA sequencing. The effect of SAM on cell apoptosis was assayed by flow cytometry analyses and its effect on cancer growth was assessed in nude mice. The VEGF-C promoters of MGC-803, BGC-823, and SGC-7901 gastric cancer cells, which normally express VEGF-C, were nearly unmethylated. After SAM treatment, the VEGF-C promoters in these cells were highly methylated and VEGF-C expression was downregulated. SAM also significantly inhibited tumor growthin vitro and in vivo. DNA methylation regulates expression of VEGF-C. SAM can effectively induce VEGF-C methylation, reduce the expression of VEGF-C, and inhibit tumor growth. SAM has potential as a drug therapy to silence oncogenes and block the progression of gastric cancer.
Resumo:
Li-Fraumeni syndrome (LFS) is a rare, autosomal dominant, hereditary cancer predisposition disorder. In Brazil, the p.R337H TP53 founder mutation causes the variant form of LFS, Li-Fraumeni-like syndrome. The occurrence of cancer and age of disease onset are known to vary, even in patients carrying the same mutation, and several mechanisms such as genetic and epigenetic alterations may be involved in this variability. However, the extent of involvement of such events has not been clarified. It is well established that p53 regulates several pathways, including the thymine DNA glycosylase (TDG) pathway, which regulates the DNA methylation of several genes. This study aimed to identify the DNA methylation pattern of genes potentially related to the TDG pathway (CDKN2A, FOXA1, HOXD8, OCT4, SOX2, and SOX17) in 30 patients with germline TP53mutations, 10 patients with wild-type TP53, and 10 healthy individuals. We also evaluated TDG expression in patients with adrenocortical tumors (ADR) with and without the p.R337H TP53 mutation. Gene methylation patterns of peripheral blood DNA samples assessed by pyrosequencing revealed no significant differences between the three groups. However, increased TDG expression was observed by quantitative reverse transcription PCR in p.R337H carriers with ADR. Considering the rarity of this phenotype and the relevance of these findings, further studies using a larger sample set are necessary to confirm our results.
Resumo:
Low-intensity lasers are used for prevention and management of oral mucositis induced by anticancer therapy, but the effectiveness of treatment depends on the genetic characteristics of affected cells. This study evaluated the survival and induction of filamentation of Escherichia coli cells deficient in the nucleotide excision repair pathway, and the action of T4endonuclease V on plasmid DNA exposed to low-intensity red and near-infrared laser light. Cultures of wild-type (strain AB1157) E. coli and strain AB1886 (deficient in uvrA protein) were exposed to red (660 nm) and infrared (808 nm) lasers at various fluences, powers and emission modes to study bacterial survival and filamentation. Also, plasmid DNA was exposed to laser light to study DNA lesions produced in vitro by T4endonuclease V. Low-intensity lasers:i) had no effect on survival of wild-type E. coli but decreased the survival of uvrA protein-deficient cells,ii) induced bacterial filamentation, iii) did not alter the electrophoretic profile of plasmids in agarose gels, andiv) did not alter the electrophoretic profile of plasmids incubated with T4 endonuclease V. These results increase our understanding of the effects of laser light on cells with various genetic characteristics, such as xeroderma pigmentosum cells deficient in nucleotide excision pathway activity in patients with mucositis treated by low-intensity lasers.
Resumo:
In DNA vaccines, the gene of interest is cloned into a bacterial plasmid that is engineered to induce protein production for long periods in eukaryotic cells. Previous research has shown that the intramuscular immunization of BALB/c mice with a naked plasmid DNA fragment encoding the Mycobacterium leprae 65-kDa heat-shock protein (pcDNA3-Hsp65) induces protection against M. tuberculosis challenge. A key stage in the protective immune response after immunization is the generation of memory T cells. Previously, we have shown that B cells capture plasmid DNA-Hsp65 and thereby modulate the formation of CD8+ memory T cells after M. tuberculosis challenge in mice. Therefore, clarifying how B cells act as part of the protective immune response after DNA immunization is important for the development of more-effective vaccines. The aim of this study was to investigate the mechanisms by which B cells modulate memory T cells after DNA-Hsp65 immunization. C57BL/6 and BKO mice were injected three times, at 15-day intervals, with 100 µg naked pcDNA-Hsp65 per mouse. Thirty days after immunization, the percentages of effector memory T (TEM) cells (CD4+ and CD8+/CD44high/CD62Llow) and memory CD8+ T cells (CD8+/CD44high/CD62Llow/CD127+) were measured with flow cytometry. Interferon γ, interleukin 12 (IL-12), and IL-10 mRNAs were also quantified in whole spleen cells and purified B cells (CD43−) with real-time qPCR. Our data suggest that a B-cell subpopulation expressing IL-10 downregulated proinflammatory cytokine expression in the spleen, increasing the survival of CD4+ TEM cells and CD8+ TEM/CD127+ cells.
Resumo:
Lophius gastrophysus has important commercial value in Brazil particularly for foreign trade. In this study, we described the optimization of Random Amplified Polymorphic DNA (RAPD) protocol for identification of L. gastrophysus. Different conditions (annealing temperatures, MgCl concentrations, DNA quantity) were tested to find reproducible and adequate profiles. Amplifications performed with primers A01, ² A02 and A03 generate the best RAPD profiles when the conditions were annealing temperature of 36ºC, 25 ng of DNA quantity and 2.5 mM MgCl2. Exact identification of the species and origin of marine products is necessary and RAPD could be used as an accurate, rapid tool to expose commercial fraud.
Resumo:
Synonyymisillä kodoneilla tarkoitetaan kodoneja, jotka ovat erilaisia, mutta koodaavat samaa aminohappoa. Synonyymisten mutaatioiden, eli kodonin vaihtaminen samaa aminohappoa koodaavaan toiseen kodoniin, on pitkään ajateltu olevan yhdentekeviä, mutta synonyymit muutokset DNA-sekvenssissä voivat kuitenkin vaikuttaa esimerkiksi proteiinin laskostumiseen ja proteiinin toimintaan solussa. Eri organismit käyttävät synonyymisiä kodoneja eri frekvensseillä. Tätä ilmiötä kutsutaan kodonikäytön poikkeamaksi. Kodonikäytön poikkeamien on osoitettu olevan tärkein yksittäinen prokaryoottien geeniekspressioon vaikuttava tekijä, ja usein proteiineja on hankala tuottaa vieraassa isännässä, jos kodonikäytön poikkeamat ovat liian suuria. Erilaisia kodonioptimointistrategioita on kehitetty näiden ongelmien ratkaisemiseksi. Kodonikäyttöä optimoitaessa on otettava huomioon lisäksi erilaiset paikalliset muuttujat, jotka lisäävät optimoinnin monimutkaisuutta. Työn lähtökohtana oli synteettinen ihmisen vasta-aineen Fab-fragmentin geeni. Geeni oli optimoitu kahdella eri strategialla, jotka tuottivat eri DNA-sekvenssit, mutta saman aminohapposekvenssin. Toinen varianteista tuotti aktiivista Fab-fragmenttia, toinen ei. DNA-sekvenssin vaikutuksen tutkimiseksi, toimivan geenin osia korvattiin toimimattoman variantin vastaavalla osalla. Kaikkiaan seitsemän geenivariantin kykyä ilmentää Fab-fragmenttia sekä liukoisena proteiinina että filamenttifaagin pinnalla vertailtiin. Lisäksi tutkittiin varianttien vaikutusta isäntäsolun kasvukinetiikkaan. Muunneltuja variantteja verrattiin alkuperäiseen toimivaan varianttiin. Faagituotossa havaittiin Fab-fragmentin kevyen ketjun DNA-sekvenssin synonyymisten muutosten vaikuttavan faagien immunoreaktiivisuuteen. Erityisen olennainen oli kevyen ketjun vakioisen alueen muuttaminen, joka myös aiheutti 45 % laskun faagien kokonaismäärässä ja 54 % laskun faagien immunoreaktiivisuudessa. Liukoista proteiinia tuotettaessa kevyen ketjun vakioisen alueen muutos laski Fab-määrän tasolle, jota ei voitu mitata. Tämän lisäksi, avoimen lukukehyksen alun kodonien synonyymiset mutaatiot aiheuttivat 48-kertaisen laskun aktiivisen liukoisen proteiinin määrässä verrattuna alkuperäiseen toimivaan varianttiin.
Resumo:
The DNA extraction is a critical step in Genetically Modified Organisms analysis based on real-time PCR. In this study, the CTAB and DNeasy methods provided good quality and quantity of DNA from the texturized soy protein, infant formula, and soy milk samples. Concerning the Certified Reference Material consisting of 5% Roundup Ready® soybean, neither method yielded DNA of good quality. However, the dilution test applied in the CTAB extracts showed no interference of inhibitory substances. The PCR efficiencies of lectin target amplification were not statistically different, and the coefficients of correlation (R²) demonstrated high degree of correlation between the copy numbers and the threshold cycle (Ct) values. ANOVA showed suitable adjustment of the regression and absence of significant linear deviations. The efficiencies of the p35S amplification were not statistically different, and all R² values using DNeasy extracts were above 0.98 with no significant linear deviations. Two out of three R² values using CTAB extracts were lower than 0.98, corresponding to lower degree of correlation, and the lack-of-fit test showed significant linear deviation in one run. The comparative analysis of the Ct values for the p35S and lectin targets demonstrated no statistical significant differences between the analytical curves of each target.
Resumo:
The physiochemical and biological properties of honey are directly associated to its floral origin. Some current commonly used methods for identification of botanical origin of honey involve palynological analysis, chromatographic methods, or direct observation of the bee behavior. However, these methods can be less sensitive and time consuming. DNA-based methods have become popular due to their simplicity, quickness, and reliability. The main objective of this research is to introduce a protocol for the extraction of DNA from honey and demonstrate that the molecular analysis of the extracted DNA can be used for its botanical identification. The original CTAB-based protocol for the extraction of DNA from plants was modified and used in the DNA extraction from honey. DNA extraction was carried out from different honey samples with similar results in each replication. The extracted DNA was amplified by PCR using plant specific primers, confirming that the DNA extracted using the modified protocol is of plant origin and has good quality for analysis of PCR products and that it can be used for botanical identification of honey.