991 resultados para DIRECT-INJECTION
Resumo:
The nonpolar m-plane (1 (1) over bar 00) thin film GaN and InGaN/GaN light-emitting diodes (LEDs) grown by metal-organic chemical vapor deposition on LiAlO2 (100) substrates are reported. The LEDs emit green light with output power of 80 mu W under a direct current of 20 mA for a 400x400 mu m(2) device. The current versus voltage (I-V) characteristic of the diode shows soft rectifying properties caused by defects and impurities in the p-n junction. The electroluminescence peak wavelength dependence on injection current, for currents in excess of 20 mA, saturates at 515-516 nm. This proves the absence of polarization fields in the active region present in c-plane structures. The light output intensity versus current (L-I) characteristic of the diode exhibits a superlinear relation at low injection current caused by nonradiative centers providing a shunt path and a linear light emission zone at high current level when these centers are saturated. (c) 2007 American Institute of Physics.
Resumo:
The effects of oxygen partial pressure on the structure and photoluminescence (PL) of ZnO films were studied. The films were prepared by direct current (DC) reactive magnetron sputtering with various oxygen concentrations at room temperature. With increasing oxygen ratio, the structure of films changes from zinc and zinc oxide phases, single-phase ZnO, to the (002) orientation, and the mechanical stresses exhibit from tensile stress to compressive stress. Films deposited at higher oxygen pressure show weaker emission intensities, which may result from the decrease of the oxygen vacancies and zinc interstitials in the film. This indicates that the emission in ZnO film originates from the oxygen vacancy and zinc interstitial-related defects. From optical transmittance spectra of ZnO films, the plasma edge shifts towards the shorter wavelength with the improvement of film stoichiometry. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Organic light-emitting diodes (OLEDs) using tris-(8-hydroxy-quinolinato) aluminum (Alq(3)) as an emitter, 8-hydroxy-quinolinato lithium (Liq) as an electron injection layer, were prepared. Experimental results show that the efficiency of device with Liq is three times higher than that without Liq. The device using Liq as an injection layer is less sensitive in efficiency to the Liq thickness than that using LiF. In addition to the Alq3 based devices, Liq is also very effective as an electron injection layer for 4,4'-bis(2,2-diphenylvinyl)-1,1'-biphenyl based blue OLED and poly (2-methoxy,5-(2-ethyl-hexyloxy)-1,4-phenylenevinylene) based orange polymer OLED. (c) 2004 Elsevier B.V. All rights reserved.